Читаем 2a. Пространство. Время. Движение полностью

T+U=1/2mw20а2 [cos2 (w0t+D)+sin2 (w0t+D)] =1/2rnw20a2.

Энергия зависит от квадрата амплитуды: если увеличить амп­литуду колебания вдвое, то энергия возрастет вчетверо. Средняя потенциальная энергия равна половине максимальной и, сле­довательно, половине полной; средняя кинетическая энергия также равна половине полной энергии.

§ 5. Колебания под действием внешней силы

Нам остается рассмотреть колебания гармонического осцил­лятора под действием внешней силы. Движение в этом случае описывается уравнением

md2x/dt2=-kx+F(t). (21.8)

Давайте подумаем, как будет вести себя грузик при этих об­стоятельствах. Внешняя движущая сила может зависеть от времени каким угодно образом. Начнем с простейшей зависимо­сти. Предположим, что сила осциллирует

F(t)=F0coswt. (21.9)

Обратите внимание, что w — это не обязательно w0: будем считать, что можно изменять w, заставляя силу действовать с разной частотой. Итак, надо решить уравнение (21.8) в случае специально подобранной силы (21.9). Каким будет решение (21.8)? Одно из частных решений (общим решением мы еще зай­мемся) выглядит так:

z=Ccoswt, (21.10)

где постоянную С еще надо определить. Иначе говоря, пытаясь найти решение в таком виде, мы предполагаем, что, если тянуть грузик взад и вперед, он в конце концов начнет качаться взад и вперед с частотой действующей силы. Проверим, может ли это быть. Подставив (21.10) в (21.9), получим

—mw2Сcoswt=-mw20Сcoswt+F0coswt. (21.11)

Мы уже заменили k на mw20, потому что удобнее сравнивать две частоты. Уравнение (21.11) можно поделить на содержащийся в каждом члене косинус и убедиться, что при правильно подоб­ранном значении С выражение (21.10) будет решением. Эта ве­личина С должна быть такой:

Таким образом, грузик т колеблется с частотой действующей на него силы, но амплитуда колебания зависит от соотношения между частотой силы и частотой свободного движения осцил­лятора. Если со очень мала по сравнению с w0, то грузик дви­жется вслед за силой. Если же чересчур быстро менять направ­ление толчков, то грузик начинает двигаться в противополож­ном по отношению к силе направлении. Это следует из равенства (21.12), которое говорит нам, что величина С отрицательна, если w больше собственной частоты гармонического осцилля­тора w0. (Мы будем называть w0 собственной частотой гармо­нического осциллятора, а w — приложенной частотой.) При очень высокой частоте знаменатель становится очень большим и грузик практически не движется.

Найденное нами решение справедливо только в том случае, когда уже установилось равновесие между осциллятором и дей­ствующей силой; это происходит после того, как вымрут дру­гие движения. Эти вымирающие движения называют переход­ным откликом на силу F(t), а движение, описываемое (21.10) и (21.12),— равновесным откликом.

Приглядевшись к формуле (21.12), мы заметим любопытную вещь: если частота со почти равна w0, то С приближается к бес­конечности. Таким образом, если настроить силу «в лад» с соб­ственной частотой, отклонения грузика достигнут гигантских размеров. Об этом знает всякий, кому когда-либо приходилось раскачивать ребенка на качелях. Это довольно трудно сделать, если закрыть глаза и беспорядочно толкать качели. Но если найти правильный ритм, то раскачать качели легко, однако, как только мы опять собьемся с ритма, толчки начнут тормо­зить качели и от такой работы будет мало проку.

Если частота со будет в точности равна w0, то амплитуда должна стать бесконечной, что, разумеется, невозможно. Мы ошиблись, потому что решали не совсем верное уравнение. Составляя уравнение (21.8), мы забыли о силе трения и о мно­гих других силах. Поэтому амплитуда никогда не достигнет бесконечности; пожалуй, пружинка порвется гораздо раньше!

<p><strong><emphasis>Глава 22 </emphasis></strong></p><p><strong><emphasis>АЛГЕБРА</emphasis></strong></p>

§ 1. Сложение и умножение

§ 2. Обратные операции

§ 3. Шаг в сторону и обобщение

§ 4. Приближенное вычисление иррациональ­ных чисел

§ 5. Комплексные числа

§ 6. Мнимые экспоненты

§ 1. Сложение и умножение

Изучая осциллятор, нам придется восполь­зоваться одной из наиболее замечательных, по­жалуй самой поразительной из формул, какие можно найти в математике. Физик обычно рас­правляется с этой формулой примерно за две минуты, даже не обратив на нее внимания. Но наука ведь не только приносит практическую пользу, а служит источником удовольствия, поэтому давайте не будем торопиться проходить мимо этой драгоценности, а посмотрим, как она выглядит в великолепном окружении, ко­торое обычно называют элементарной алгеброй.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука