Читаем Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей полностью

Еще требуется умение видеть суть вещей. Невозможно успешно функционировать в мире, о котором вам ничего не известно. Понять, каким образом мы осознаем различные вещи, помогает такое научное направление, как представление знаний. В его рамках изучаются способы внутреннего хранения данных, с последующей их обработкой алгоритмами формирования рассуждений, такими как алгоритмы автоматического логического вывода и вероятностного вывода.

Машинное обучение всегда было частью науки об ИИ. По сути, это развитие корректного поведения на базе предшествующего опыта.

М. Ф.: Еще дайте, пожалуйста, определения нейронным сетям и глубокому обучению.

С. Р.: Одна из стандартных методик машинного обучения – это обучение с учителем. Системе ИИ дается набор примеров какого-то понятия, снабженных описаниями и метками. Представьте фотографию с подписью, которая указывает, что это изображение лодки, далматинца или чашки с вишнями. Цель обучения состоит в поиске параметра или гипотезы, которые позволят классифицировать изображения в целом. Так мы пытаемся научить ИИ предсказывать, как могут выглядеть другие изображения тех же объектов.

Гипотезу или параметр можно представить в виде нейронной сети – схемы, состоящей из набора слоев. Входом в нее могут быть значения пикселов на фотографиях далматинцев. В процессе их распространения по схеме на каждом уровне вычисляются новые значения. На выходе из нейронной сети мы получаем распознавание объекта. И мы надеемся, что если подать на вход изображение далматинца, то после прохождения значений всех пикселов через все слои нейронной сети индикатор далматинца будет иметь высокое значение, а индикатор чашки с вишнями низкое. В этом случае можно сказать, что нейронная сеть правильно распознала объект.

М. Ф.: А как заставить нейронную сеть распознавать объекты на изображениях?

С. Р.: Для этого и нужен процесс обучения. Его алгоритмы настраивают весовые коэффициенты всех связей таким образом, чтобы на примерах сеть запоминала правильные ответы. При определенном везении сеть начинает распознавать объекты и на новых, не входящих в обучающий набор изображениях.

Глубокое обучение – это обучение многослойных нейронных сетей. Формально минимального требования к глубине сети не существует, но двух- или трехуровневые сети, как правило, не считаются глубокими. Некоторые сети могут насчитывать более тысячи слоев. В них преобразование, происходящее между входом и выходом, можно представить как композицию более простых преобразований, происходящих на отдельных уровнях. Предполагается, что наличие множества уровней облегчает поиск обобщающих параметров благодаря установлению весовых коэффициентов всех связей.

Мы только подходим к теоретическому пониманию того, в каких случаях и почему глубокое обучение дает верные результаты. По большому счету все происходящее до сих пор выглядит для нас как магия. Кажется, что изображения, звуковые сигналы и речь, подаваемые на вход глубокой сети, обладают каким-то свойством, помогающим вычленить из них нужный признак. Но пока не ясно, каким.

М. Ф.: Может сложиться впечатление, что ИИ – это синоним глубокого обучения. Это не так?

С. Р.: Приравнивать глубокое обучение к ИИ – ошибка, потому что умение отличать далматинцев от ваз с вишнями – это малая часть требований к эффективному ИИ. Программы AlphaGo и AlphaZero привлекли внимание СМИ к глубокому обучению, но на самом деле это гибрид классического ИИ, который использует метод поиска, с алгоритмом глубокого обучения, который оценивает каждую игровую позицию. Хотя умение отличать хорошую позицию от плохой в го ключевое, программа не смогла бы сыграть на уровне чемпиона мира только в результате глубокого обучения.

По такому же принципу работает система беспилотного автомобиля. На дороге то и дело возникают ситуации, разрешение которых должно происходить по классическим правилам, но в то же время нужно предугадывать возможную реакцию других участников движения, оценивать последствия.

Восприятие – это важный компонент ИИ, который вполне адекватно удается реализовать через глубокое обучение, но для создания системы ИИ требуется множество других способностей различного типа. Особенно это касается действий, растянутых во времени, таких как поездка в отпуск, или сложных – строительство завода. Такие виды деятельности невозможно организовать, имея только систему типа «черный ящик» с глубоким обучением. Иначе алгоритму глубокого обучения нужно будет продемонстрировать все способы, которые когда-либо применялись для строительства. Научится ли система после этого строить заводы? Нет. Во-первых, таких данных не существует, а если бы они и были – нет смысла строить заводы таким образом.

Для строительства нужны специальные знания. Умение планировать. Знание свойств материалов. Чтобы решать долгосрочные и сложные задачи, можно создать системы ИИ, но глубокое обучение тут не поможет.

М. Ф.: Есть ли достижения в сфере ИИ, которые можно считать прорывом?

Перейти на страницу:

Все книги серии Библиотека программиста

Программист-фанатик
Программист-фанатик

В этой книге вы не найдете описания конкретных технологий, алгоритмов и языков программирования — ценность ее не в этом. Она представляет собой сборник практических советов и рекомендаций, касающихся ситуаций, с которыми порой сталкивается любой разработчик: отсутствие мотивации, выбор приоритетов, психология программирования, отношения с руководством и коллегами и многие другие. Подобные знания обычно приходят лишь в результате многолетнего опыта реальной работы. По большому счету перед вами — ярко и увлекательно написанное руководство, которое поможет быстро сделать карьеру в индустрии разработки ПО любому, кто поставил себе такую цель. Конечно, опытные программисты могут найти некоторые идеи автора достаточно очевидными, но и для таких найдутся темы, которые позволят пересмотреть устоявшиеся взгляды и выйти на новый уровень мастерства. Для тех же, кто только в самом начале своего пути как разработчика, чтение данной книги, несомненно, откроет широчайшие перспективы. Издательство выражает благодарность Шувалову А. В. и Курышеву А. И. за помощь в работе над книгой.

Чед Фаулер

Программирование, программы, базы данных / Программирование / Книги по IT

Похожие книги

Абсолютное зло: поиски Сыновей Сэма
Абсолютное зло: поиски Сыновей Сэма

Кто приказывал Дэвиду Берковицу убивать? Черный лабрадор или кто-то другой? Он точно действовал один? Сын Сэма или Сыновья Сэма?..10 августа 1977 года полиция Нью-Йорка арестовала Дэвида Берковица – Убийцу с 44-м калибром, более известного как Сын Сэма. Берковиц признался, что стрелял в пятнадцать человек, убив при этом шестерых. На допросе он сделал шокирующее заявление – убивать ему приказывала собака-демон. Дело было официально закрыто.Журналист Мори Терри с подозрением отнесся к признанию Берковица. Вдохновленный противоречивыми показаниями свидетелей и уликами, упущенными из виду в ходе расследования, Терри был убежден, что Сын Сэма действовал не один. Тщательно собирая доказательства в течение десяти лет, он опубликовал свои выводы в первом издании «Абсолютного зла» в 1987 году. Терри предположил, что нападения Сына Сэма были организованы культом в Йонкерсе, который мог быть связан с Церковью Процесса Последнего суда и ответственен за другие ритуальные убийства по всей стране. С Церковью Процесса в свое время также связывали Чарльза Мэнсона и его секту «Семья».В формате PDF A4 сохранен издательский макет книги.

Мори Терри

Публицистика / Документальное
1917. Разгадка «русской» революции
1917. Разгадка «русской» революции

Гибель Российской империи в 1917 году не была случайностью, как не случайно рассыпался и Советский Союз. В обоих случаях мощная внешняя сила инициировала распад России, используя подлецов и дураков, которые за деньги или красивые обещания в итоге разрушили свою собственную страну.История этой величайшей катастрофы до сих пор во многом загадочна, и вопросов здесь куда больше, чем ответов. Германия, на которую до сих пор возлагают вину, была не более чем орудием, а потом точно так же стала жертвой уже своей революции. Февраль 1917-го — это начало русской катастрофы XX века, последствия которой были преодолены слишком дорогой ценой. Но когда мы забыли, как геополитические враги России разрушили нашу страну, — ситуация распада и хаоса повторилась вновь. И в том и в другом случае эта сила прикрывалась фальшивыми одеждами «союзничества» и «общечеловеческих ценностей». Вот и сегодня их «идейные» потомки, обильно финансируемые из-за рубежа, вновь готовы спровоцировать в России революцию.Из книги вы узнаете: почему Николай II и его брат так легко отреклись от трона? кто и как организовал проезд Ленина в «пломбированном» вагоне в Россию? зачем английский разведчик Освальд Рейнер сделал «контрольный выстрел» в лоб Григорию Распутину? почему германский Генштаб даже не подозревал, что у него есть шпион по фамилии Ульянов? зачем Временное правительство оплатило проезд на родину революционерам, которые ехали его свергать? почему Александр Керенский вместо борьбы с большевиками играл с ними в поддавки и старался передать власть Ленину?Керенский = Горбачев = Ельцин =.?.. Довольно!Никогда больше в России не должна случиться революция!

Николай Викторович Стариков

Публицистика
10 мифов о 1941 годе
10 мифов о 1941 годе

Трагедия 1941 года стала главным козырем «либеральных» ревизионистов, профессиональных обличителей и осквернителей советского прошлого, которые ради достижения своих целей не брезгуют ничем — ни подтасовками, ни передергиванием фактов, ни прямой ложью: в их «сенсационных» сочинениях события сознательно искажаются, потери завышаются многократно, слухи и сплетни выдаются за истину в последней инстанции, антисоветские мифы плодятся, как навозные мухи в выгребной яме…Эта книга — лучшее противоядие от «либеральной» лжи. Ведущий отечественный историк, автор бестселлеров «Берия — лучший менеджер XX века» и «Зачем убили Сталина?», не только опровергает самые злобные и бесстыжие антисоветские мифы, не только выводит на чистую воду кликуш и клеветников, но и предлагает собственную убедительную версию причин и обстоятельств трагедии 1941 года.

Сергей Кремлёв

Публицистика / История / Образование и наука
188 дней и ночей
188 дней и ночей

«188 дней и ночей» представляют для Вишневского, автора поразительных международных бестселлеров «Повторение судьбы» и «Одиночество в Сети», сборников «Любовница», «Мартина» и «Постель», очередной смелый эксперимент: книга написана в соавторстве, на два голоса. Он — популярный писатель, она — главный редактор женского журнала. Они пишут друг другу письма по электронной почте. Комментируя жизнь за окном, они обсуждают массу тем, она — как воинствующая феминистка, он — как мужчина, превозносящий женщин. Любовь, Бог, верность, старость, пластическая хирургия, гомосексуальность, виагра, порнография, литература, музыка — ничто не ускользает от их цепкого взгляда…

Малгожата Домагалик , Януш Вишневский , Януш Леон Вишневский

Публицистика / Семейные отношения, секс / Дом и досуг / Документальное / Образовательная литература