“Вы, помнится, – пишет Мере Паскалю, – сказали мне, что теперь вы не так уже уверены в превосходстве математики. Теперь вы мне пишете, что я открыл вам вещи, которых вы никогда не видели и не знали без меня. Не знаю, однако, сударь, так ли вы мне обязаны, как говорите. У вас все еще осталась привычка, приобретенная вами вследствие занятий этой наукой: вы обо всем судите только с вашими доказательствами, которые большею частью ложны. Эти длинные рассуждения мешают вам прежде всего приобрести знания более высокого сорта и притом такие, которые никогда не обманывают. Предупреждаю вас, что вы вследствие этого много теряете в свете, потому что тот, у кого есть живой ум и наблюдательность, тот сейчас же замечает по выражению лиц, которые видит, множество очень полезных вещей; но если вы, по вашему обыкновению, спросите у того, кто умеет пользоваться этого рода наблюдениями, на каком принципе они основаны, он, может быть, скажет вам, что сам не знает. Я только тогда поверю, что вы окончательно отделались от этой математики, когда вы перестанете утверждать, что маленькие тела, о которых мы спорили, делимы без конца. Но то, о чем вы теперь пишете, еще дальше от здравого смысла, чем то, что вы говорили в нашем споре. Думаете ли вы, что линия, разделенная пополам и так далее, может делиться без конца? Кто вам сказал, что вы можете так делить? А если ее части неравны, как в нечетном числе? Уверяю вас, что, как только в какой-либо вопрос впутывают бесконечность, он становится необъясним, потому что ум смущается и перепутывает все. Поэтому лучше искать истину здравым смыслом, чем вашими доказательствами. Вы знаете, что я открыл в математике вещи столь редкие, что самые ученые из древних авторов о них ничего не говорили и что лучшие математики Европы были изумлены. Вы писали о моих открытиях, равно как господа Гугенс (Гюйгенс), Фермак (Ферма) и другие”.
О “великих открытиях” кавалера де Мере, послуживших основою для работ ученых, которых де Мере не умел назвать даже по имени, будет речь ниже. Не мешает привести отзыв о переписке Мере с Паскалем, принадлежащий великому философу Лейбницу, так как это суждение философа, бывшего почти современником Паскаля, прекрасно выясняет отношение кавалера де Мере к знаменитому математику.
“Я едва удерживался от смеха, – писал Лейбниц, – когда увидел, в каком тоне пишет кавалер де Мере Паскалю. Вижу, что кавалер понял характер Паскаля, сообразив, что этот великий гений имел свои неровности, делавшие его часто слишком чувствительным к утрированным спиритуалистическим рассуждениям, вследствие чего он не раз временно разочаровывался в самых солидных знаниях. Де Мере пользовался этим, чтобы говорить с Паскалем сверху вниз. Кажется, он подсмеивается над Паскалем, как делают светские люди, обладающие избытком остроумия и недостатком знаний. Они хотят нас убедить, что то, чего они не понимают, есть пустяк. Надо бы послать этого кавалера в школу к Робервалю. Правда, у де Мере были большие способности даже к математике. Я узнал, впрочем, от Де Биллета, друга Паскаля, о знаменитом открытии, которым так хвастает этот кавалер. Будучи страстным игроком, он впервые придумал задачу об оценке пари. Предложенный им вопрос породил прекрасные исследования Ферма, Паскаля и Гюйгенса, в которых Роберваль не мог ничего понять… Но то, что кавалер де Мере пишет против бесконечной делимости, доказывает, что автор письма еще слишком далек от высших мировых сфер, и, по всей вероятности, прелести здешнего мира, о которых он также пишет, не дали ему достаточно времени для приобретения права гражданства в более высокой области”.
За кавалером де Мере история математики должна признать ту несомненную заслугу, что он страстно любил игру в кости. Не будь этого, теория вероятностей могла бы опоздать на целое столетие.
Как страстный игрок де Мере чрезвычайно интересовался следующим вопросом: каким образом разделить ставку между игроками в случае, если игра не была окончена? Решение этой задачи совершенно не поддавалось всем известным до того времени математическим методам.
Математики привыкли иметь дело с вопросами, допускающими вполне достоверное, точное или, по крайней мере, приблизительное решение. Здесь предстояло решить вопрос, не зная, который из игроков мог бы выиграть в случае продолжения игры? Ясно, что речь шла о задаче, которую надо было решить на основании