Читаем БЫСТРЫЙ СЧЕТ Тридцать простых приемов устного счета полностью

48*11/4 =48 +12=60

58*11/4 = 58+14 1/2=721/2 или 72,5

<p>§ 15</p>

Чтобы устно умножить число на 21/2. к удвоенному числу прибавляют половину множимого.

Например: 18*21/2.=36+9= 45;

39*21/2.= 78 + 19'1/2.= 971/2 (или 97,5)

Другой способ состоит в умножении на 5 и делении пополам:

18*21/2 = 90:2 = 45

<p>§ 16.</p>

Чтобы устно умножить число на 3/4 (т. е. чтобы найти 3/4 этого числа), умножают число на 11/2 и делит пополам. Например:

30 * 3/4 = (30+15)/2= 221/2 (или 22,5)

Видоизменение способа состоит в том, что от множимого отнимают его четверть или к половине множимого прибавляют половину этой половины.

<p>Умножение на 15, на 125, на 75</p><p>§ 17</p>

Умножение на 15 заменяют умножением на 10 и на 11/2, (потому что 10*11/2 =15) Например:

18*15=18*11/2*10=270

45*15=450+225=675

<p>§ 18. </p>

Умножение на 125 заменяют умножением на 100 и на 11/4 (потому что 100*11/4=125). Например:

26*125 = 26*100*11/4 = 2600 + 650 = 3250

47*125 = 47*100*11/4 = 4700+4700/4= 4700+1175 = 5875

<p>§ 19.</p>

Умножение на 75 заменяют умножением на 100 и на 3/4 (потому что 100*3/4=75). Например:

18*75= 18*100*3/4 =1800* 3/4 =(1800 + 900)/2=1350

Примечание. Некоторые из приведенных примеров удобно выполняются также приемом § 6

18*15 = 90*3 = 270

26*125 = 130*25 = 3250

<p>Умножение на 9 и на 11</p><p>§ 20.</p>

Чтобы устно умножить число на 9, приписывают к нему ноль и отнимают множимое. Например:

62*9=620-62=600—42=558

73*9=730-73=700—43=657

<p>§ 21</p>

Чтобы устно умножить число на 11, приписывают к нему ноль и прибавляют множимое. Например:

87*11=870+87=957

<p>Деление на 5, на 1<sup>1</sup><sub>/2</sub>,на 15</p><p>§ 22 </p>

Чтобы устно разделить число на 5, отделяют запятой в удвоенном числ-последнюю цифру. Например:

68:5=136:10=13,6

237:5 =474:10=47,4

<p>§ 23</p>

Чтобы устно разделить число на 11/2 делят удвоенное число на 3. Например:

36:11/2=72:3=24

53:11/2=106:3=351/3

<p>§ 24. </p>

Чтобы устно разделить число на 15, делят удвоенное число на 30. Например

240:15=480:30=48:3=16

462:15=924:30=3024/30=304/5=30,8 (или 924:30 =308:10=30,8)

<p>Возвышение в квадрат</p><p>$ 25.</p>

Чтобы возвысить в квадрат число, оканчивающееся цифрой 5 (например 85), умножают число десятков (8) на него же плюс единица (8*9=72) и приписывают 25 (в нашем примере получается 7225). Еще примеры:

252; 2*3=6; 625

452; 4*5= 20; 2025

1452; 14*15 = 210; 21025

Прием этот вытекает из формулы (10х+5)2 = 100х2+100х+25=100х(х+1)+25

<p>§ 26.</p>

Сейчас указанный прием приложим и к десятичным дробям, оканчивающимся цифрой 5:

8,52 = 72,25

14,52=210,25

0,352 = 0,1225f и т. п.

<p>§ 27.</p>

Так как 0,5= 1/2 , а 0,25 = 1/4 , то приемом § 25 можно пользоваться также и для возвышения в квадрат чисел, оканчивающихся дробью 1/2 :

(8 1/2 )2 =72 1/4

(14 1/2 )2 = 210 1/4 и т п.

<p>§ 28.</p>

При устном возвышении в квадрат часто удобно бывает пользоваться формулой (a +-b)2 = a2 +b2+- 2ab.

Например: 412=402 +1+2*40= 1601+80= 1681

692=702+1-2*70=4901-140=4761

362 =(35+1)2=1225+1+ 2*35=1296

Прием удобен для чисел, оканчивающихся на 1, 4, 6 и 9.

<p>Вычисления по формуле</p>

(а+b) (а-b) = а2 — b2

<p>§ 29.</p>

Пусть требуется выполнить устно умножение 52*48

Мысленно представляем эти множители в виде (50 + 2)*(50—2)

и применяем приведенную в заголовке формулу:

(50+2)*(50—2)=502-22= 2496

Подобным же образом поступают во всех вообще случаях, когда один множитель удобно представить в виде суммы двух чисел, другой — в виде разности тех же чисел:

69X71=(70—1)*(70+1)=4899

33X27=(30+3)*(30—3)=891

53X57=(55—2)*(55+2)=3021

84X86=(85-1)*(85+1)=7224

<p>§ 30.</p>

Указанным сейчас приемом удобно пользоваться и для вычислений следующего рода:

7 1/2 *6 1/2 =(7 + 1/2 )*(7 — 1/2 )=48 3/4

11 3/4*12 1/4= (12 - 1/4)*(12 +1/4) =143 15/16

<p><strong>Полезно запомнить:</strong></p>

37*З =111

Запомнив это, легко выполнять устно умножение числа 37 на 6, 9, 12 и т. п.

37*6=37*3*2=222

37*9=37*3*3=333

37*12=37*3*4=444

37*15=37*3*5 =555 и т. д,

7*11*13=1001

Запомнив это, легко выполнять устно умножения следующего рода:

77*13=1001

77*26=2002

77*39=3003 и т. д.

91*11=1001

91*22=2002

91*33=3003 и т. д.

143*7=1001

143*14=2002

143*21=3003 и т. д.

В нашей книжечке указаны только простейшие, наиболее удобоприменимые способы устного выполнения действий умножения, деления и возвышения в квадрат. Практикуясь в сознательном пользовании ими, вдумчивый читатель выработает для себя ряд еще и других приемов, облегчающих вычислительную работу.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное