Читаем – Число Бога. Золотое сечение – формула мироздания полностью

Связь Якоба Бернулли с золотым сечением прослеживается благодаря другой знаменитой кривой. Якоб написал трактат под названием «Spira Mirabilis» («Чудесная спираль») и посвятил ее особой разновидности спирали. Красота так называемой логарифмической спирали (рис. 37, названием она обязана тому, как радиус кривой возрастает по мере движения по часовой стрелке) настолько заворожила Якоба, что он завещал начертать эту фигуру и девиз, который он ей приписал – «Eadem mutate resurgo», «Измененная, вновь воскресаю прежней» – на своем надгробии.

Рис. 37

Девиз отражает фундаментальное уникальное качество логарифмической кривой: с увеличением размера она не меняет формы. Эта черта называется самоподобием. Очарованный этим качеством, Якоб писал, что логарифмическую спираль «можно сделать символом как стойкости и постоянства в трудных обстоятельствах, так и человеческого организма, который после всех перемен, даже после смерти, восстанавливает точное свое подобие и полное совершенство».

Если немного подумать, станет ясно, что именно это свойство требуется для многих явлений роста и развития в природе. Например, по мере того как моллюск наутилус помпилиус (рис. 4) растет в своей раковине, он создает камеры все просторнее и просторнее, а те, которые стали ему малы, запечатывает. Каждая прибавка в длине раковины влечет за собой и пропорциональное увеличение радиуса, поэтому общая форма раковины остается неизменной. То есть «домик» у наутилуса всю жизнь одинаковый, и моллюску не приходится потом, например, сдвигать центр тяжести раковины. То же свойство присуще и бараньим рогам – они тоже имеют форму логарифмической спирали, хотя и не лежат в одной плоскости, – и изгибу слоновьих бивней. Логарифмическая спираль, набирая размер, становится шире, расстояние между «витками» увеличивается по мере отдаления от центра – так называемого полюса. Причем поворот на равные углы увеличивает расстояние от полюса на равные промежутки. Если бы мы, вооружившись микроскопом, увеличили бы витки, невидимые невооруженным глазом, до таких размеров, как на рис. 37, они в точности совпали бы с большой спиралью. Это свойство и отличает логарифмическую спираль от другой известной кривой, так называемой архимедовой спирали (в честь великого греческого математика Архимеда (ок. 287–212 гг. до н. э.), который подробно описал ее в своем трактате «О спиралях»). Архимедову спираль мы наблюдаем на торце рулонов туалетной бумаги или в рисунке каната, свернутого на полу. У спирали этого типа расстояние между витками всегда постоянно. К сожалению, каменщик, изготавливавший надгробие Якоба Бернулли, изобразил на нем по ошибке скорее архимедову, чем логарифмическую спираль, что, конечно, наверняка очень огорчило бы ученого.

Природа обожает логарифмические спирали. Похоже, это ее любимый узор – она украшает им все подряд, от подсолнухов и ракушек до водоворотов, смерчей и гигантских спиральных галактик. Постоянная форма логарифмической спирали любого размера прекрасно проявляется в природе и в очертаниях раковин микроскопических одноклеточных организмов под названием фораминиферы. Хотя спиральные ракушки в данном случае – структуры сложные, это не просто трубочка, рентгеновские изображения внутренней структуры ископаемых раковин этих существ показывают, что за много миллионов лет их рисунок – логарифмическая спираль – остался прежним. В своем классическом труде «Изгибы жизни» (Theodore Andrea Cook. The Curves of Life, 1914) английский писатель и издатель Теодор Андреа Кук приводит массу примеров появления спиралей, не только логарифмических, как в природе, так и в искусстве. Он пишет о спиралях в самых разных предметах – это и вьющиеся растения, и человеческий организм, и винтовые лестницы, и татуировки маори. Когда Кук объясняет, что подвигло его на создание книги, то пишет: «…Существованию этих глав о спиральных структурах нет никаких оправданий, кроме увлекательности и красоты самих исследований». Скажем, в этюде к мифологическому сюжету «Леда и лебедь» Леонардо да Винчи косы Леды почти точно повторяют форму логарифмической спирали (рис. 38). Леонардо много раз повторял этот мотив в этюдах спиралей в облаках и в воде – этому посвящен потрясающий цикл рисунков «Потоп». В этом произведении Леонардо сочетал научные исследования над катастрофическими наводнениями с аллегорическими аспектами разрушительных сил, грянувших с небес. Вот как Леонардо описывает бурный поток: «Внезапно нахлынувшие воды обрушиваются в омут, который их вмещает, сметая разнообразные препятствия своими бурными завихрениями… Натиск водоворота, возникающего в месте низвержения воды, швыряет воду прямо на другие водовороты, закрученные в противоположном направлении».

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное