Читаем Десять уравнений, которые правят миром. И как их можете использовать вы полностью

Эти люди рассуждают не в абсолютных характеристиках – «та компания получит прибыль в следующем квартале» или «тот стартап провалится», – а в терминах вероятностей: «компания получит прибыль с вероятностью 34 %» или «для этого стартапа риск неудачи составляет 90 %». Когда поступает новая информация – например, CEO вынужден уйти в отставку или бета-версия, выпущенная стартапом, пользуется успехом, – они корректируют эти вероятности: 34 % превращаются в 21 %, а 90 % – в 80 %.

Аналогичные истории я слышал и от Джеймса, знакомого из индустрии азартных игр. Там в ходу варианты уравнения ставок, но при таком количестве денег на кону приходится принимать быстрые решения о том, годится ли их модель для предстоящих футбольных матчей. Что делать, если за час до игры стартовый состав команды меняется и предположения, лежащие в основе модели, становятся недействительными?

– Именно в такие моменты вы узнаете, кто действительно хороший специалист, – говорил Джеймс. – Он не реагирует резко. При одном изменении в стартовом составе ставка не меняется; при двух – четырех специалист оценивает разные возможности; при пяти или больше все ставки снимаются.

Чтобы научиться думать как эти аналитики, вам нужно ставить себя в эмоционально напряженную ситуацию. К примеру, на земле большинство из нас понимают, что полеты не опасны: вероятность попасть в авиакатастрофу со смертельным исходом не превосходит 1 на 10 миллионов. Но в воздухе все ощущается иначе.

Представьте, что вы опытный путешественник, уже летавший сотню раз. Однако этот рейс иной. При снижении самолет начинает грохотать и трястись – такой болтанки вы еще не ощущали. Женщина рядом хватает воздух ртом; мужчина, сидящий через проход, стискивает колени. Все вокруг явно напуганы. Что это? Может ли разворачиваться наихудший сценарий?

В подобных ситуациях математик глубоко вдохнет и соберет всю доступную информацию. Назовем катастрофой худший сценарий – крушение со смертельным (для вас) исходом. Обозначим его вероятность как P{катастрофа}. По статистике, P{катастрофа} = 1/10 000 000, или 1 на 10 миллионов[23].

Чтобы понять, как события зависят друг от друга, обозначим P{тряска|катастрофа} – вероятность, что самолет трясется, при условии, что произойдет катастрофа: «тряска» означает «самолет трясется», а вертикальная линия – «при условии». Сделаем разумное предположение, что P{тряска|катастрофа} = 1, то есть перед любой катастрофой самолет трясет.

Нам также необходимо знать P{тряска|не катастрофа} – вероятность болтанки при безопасном приземлении. Здесь вам придется опираться на свои ощущения. Раз это самый страшный рейс из сотни ваших полетов, то лучшей оценкой будет P{тряска|не катастрофа} = 1/100.

Эти вероятности полезны, но вы желаете знать не их. Вам нужна величина P{катастрофа|тряска}, или вероятность того, что произойдет крушение, при условии, что самолет так трясется. Эту величину можно найти с помощью теоремы Байеса.

Символ ∙ означает умножение. Вскоре я объясню, откуда появляется это уравнение, а пока просто примем его. Оно было рассмотрено преподобным Томасом Байесом в середине XVIII века и с тех пор используется математиками[24]. Подставив все нужные числа в наше уравнение, мы получаем:

Даже если это самая сильная болтанка, которую вы когда-либо испытывали, шансы погибнуть составляют 0,00001. Вы благополучно приземлитесь с вероятностью 99,99999 %.

То же рассуждение применимо к целому ряду различных, казалось бы, опасных ситуаций. Даже если во время купания на австралийском побережье вам кажется, что вы видите в воде нечто пугающее, вероятность того, что это акула, крохотная. Вы можете волноваться, когда ваши близкие возвращаются поздно домой, а вам не удается с ними связаться, но вероятнее всего, что они просто забыли зарядить телефон. Многое из того, что мы считаем новой информацией – тряска самолета, неясные фигуры в воде или отсутствие звонков, – не так уж страшно, если подходить к проблеме правильно.

Теорема Байеса позволяет вам верно оценивать важность информации и сохранять спокойствие, когда все вокруг паникуют.

* * *

Я смотрю на мир способом, который именую кинематографическим: часто (и один, и даже в компании) прокручиваю в голове фильмы о своем будущем. Это не один фильм или одно будущее; это много фильмов с разными поворотами сюжета и концовками. Объясню на примере самолета.

Когда я взлетаю и приземляюсь на самолете, то вижу катастрофу, которую описал выше. Если лечу с семьей, то представляю, как держу руки детей, говорю, что люблю их, чтобы они не беспокоились. Я воображаю, как мы держимся вместе, когда падаем навстречу смерти. Когда я лечу один, а вокруг только незнакомцы, то смотрю другой фильм: наблюдаю целые годы, которые моя семья проведет без меня. Похороны проходят быстро, и я вижу, как моя жена в одиночку справляется с детьми и рассказывает им истории о нашей совместной жизни. Этот фильм неописуемо печален.

Перейти на страницу:

Все книги серии МИФ. Научпоп

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное