Читаем До предела чисел. Эйлер. Математический анализ полностью

Ученый также занимался теорией ошибок, которая, однако, стала полноценной теорией только после создания Гауссом метода наименьших квадратов. Необходимо помнить, что в то время погрешности в измерениях подсчитывались путем вывода их среднего арифметического. Положительные и отрицательные величины среди отклонений компенсировали друг друга, следовательно, невозможно было понять природу каждой отдельной ошибки и исправить ее.

ВТОРОСТЕПЕННЫЕ РАБОТЫ

В Пруссии Эйлер написал несколько работ, которые можно называть второстепенными, если сравнивать их с другими фундаментальными трудами из его обширного наследия. В 1744 году вышла книга о траектории планет и комет, Theoria motuum planetarum et cometarum ("Теория движения планет и комет"), а в 1746 году — трактат по оптике, в котором говорится о свете и цветах,— Nova theoria lucis et colorum ("Новая теория света и цветов"). Вслед за Христианом Гюйгенсом (1629-1695) Эйлер склонялся к волновой гипотезе, превалировавшей над корпускулярной вплоть до создания квантовой механики. В 1745 году был опубликован сделанный Эйлером перевод на немецкий язык книги New Principles of Gunnery ("Новые принципы артиллерийского искусства") Бенджамина Роббинса (1707-1751). Ученый сделал такое количество комментариев, исправлений и дополнений, что фактически написал книгу заново.

В 1765 году, когда Эйлер уже переезжал в Россию, в печать отправилась Theoria motus corporum solidorum seu rigidorum ( "Теория движения твердых тел") — второй трактат по механике. Он стал улучшенным вариантом первого (в котором методы математического анализа впервые применялись в механике), поскольку в нем появились уравнения, впоследствии названные дифференциальными уравнениями движения твердого тела, подверженного действию внешних сил, и углы Эйлера, связанные с использованием систем координат, одна из которых неподвижна, а вторая привязана к движущемуся телу так, что его движение оказывается разложено на линейное и вращательное. Все специалисты подчеркивают оригинальность некоторых исследований, например изучения оси вращения обычной юлы, которое подводит к понятию нутации и прецессии равноденствий.

Мы уже говорили, что еще одной страстью Эйлера была картография. В течение нескольких лет ученый принимал участие в создании атласа России. В результате он был напечатан в 1745 году и состоял из 20 карт. Эйлер очень гордился этим достижением и утверждал, что благодаря этому атласу российская картография обогнала немецкую.

Тем не менее, несмотря на обширную деятельность ученого, нельзя думать, что все написанное им было верным. В работах Эйлера встречается неизбежный недостаток той эпохи — отсутствие точности в операциях и определениях. Многие его догадки справедливы не потому, что строго доказаны, а просто потому, что они работают. В XIX веке ученые потратили немало сил, чтобы дать основу дерзким предположениям Эйлера, определив такие понятия, как предел, сходимость или непрерывность, с помощью которых удалось залатать дыры в доказательствах многих его предположений. Математика стала скучнее, но точнее.

ФУНДАМЕНТАЛЬНАЯ ТРИЛОГИЯ: ВЕРШИНЫ АНАЛИЗА

Эйлер оставил след в огромном количестве самых разных областей знания и написал работы обо всем, что вызывало его интерес, однако для многих он стал в первую очередь отцом современного математического анализа, как если бы это было его основной заслугой. В предыдущем параграфе мы рассмотрели вклад Эйлера в вариационное исчисление. В последующие годы ученый — видимо, вдохновленный своим успехом — углубил и структурировал обширные знания по анализу в нескольких трактатах.

В 1748 году он опубликовал Introductio in analysin infinitorum ("Введение в анализ бесконечных"), шедевр в двух томах, который вместе с Instituciones calculi differentialis ("Дифференциальное исчисление") 1755 года и с трехтомным Instituciones calculi integralis ("Интегральное исчисление") 1768-1770 годов входит в непревзойденную по сей день научную трилогию. Появление этих работ разделило математику на до и после, особенно в области анализа. Франсуа Араго (1786-1853) назвал Эйлера "анализом, воплощенном в человеке", а историк математики Карл Бенджамин Бойер (1906-1976) ставил его работы в один ряд с трудами Евклида, Ньютона, Гаусса и Декарта и даже впереди их всех, поскольку они имеют большее педагогическое значение. Вот что пишет Бойер:

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное