Читаем До предела чисел. Эйлер. Математический анализ полностью

где π(x) — число простых чисел, меньших х. Эта теорема была доказана независимо друг от друга математиками Шарлем Жаном де ла Валле Пуссеном (1866-1962) и Жаком Адамаром (1865-1963) в 1896 году. Бернхард Риман расширил идеи Эйлера до области комплексных чисел С, применив к ней дзета- функцию (мы говорили о ней в главе 2), которую сам Эйлер рассматривал только в области вещественных чисел R. Затем был совершен переход к так называемой аналитической теории чисел, а позже — к оставшейся недоказанной гипотезе Римана.

ФУНКЦИЯ φ

В арифметике существует понятие не только простого числа, но и взаимно простых чисел. Целые положительные числа р и q являются взаимно простыми, если у них нет общих делителей, кроме 1. Например, 14 и 15 — взаимно простые, поскольку, даже если ни одно из них не является простым само по себе, у них нет общего делителя, кроме 1:

14-2-7

15-3-5.

То же самое можно выразить более современным способом, используя понятие наибольшего общего делителя (НОД). Сказать, что p и q являются взаимно простыми, — равноценно тому, что их НОД - 1.Функция, которую Эйлер называл φ(n), определяется как количество взаимно простых чисел, меньших п и взаимно простых с ним. Возьмем для примера числа от 1 до 10:

φ(1) = 1

φ(2) = 1

φ(3) = 2

φ(4) = 2

φ(5) = 4

φ(6) = 2

φ(7) = 6

φ(8) = 4

φ(9) = 6

φ(10) = 4.

Функция φ(n) называется индикаторной функцией; это не просто довольно интересная арифметическая игрушка, а инструмент, который можно широко использовать; она встречается в одной из самых важных теорем теории чисел — так называемой малой теореме Ферма. Как ни странно, вопреки тому, что Эйлер обычно сам вводил математические обозначения в своих работах, знак функции <р принадлежит не ему. Он доказал, что если р ид взаимно простые, то

φ(pq) = φ(p)φ(q)·

К тому же, если р — простое число, то φ(р) = р-1. Эйлеру же принадлежит следующий результат (хотя к нему подошли и раньше): если p и q — взаимно простые числа, то верна так называемая малая теорема Ферма:

pφ(q) ≡ 1 mod q,

где mod q — модуль q и означает, что pφ(q) и 1 имеют одинаковый остаток при делении на q. Эта теорема была доказана Эйлером в 1736 году, в Theorematum Quorundam ad Numéros Primos Spectantium Demonstratio ("Доказательство некоторых теорем о простых числах"), и в прошлом имела сжатую форму, которую придал ей сам Ферма. Если мы предположим, что q простое число, то φ(q) = q - 1. и мы получим оригинальную запись Ферма:

pq-1 ≡ 1 mod q,

где q — простое число, а р и q — взаимно простые. Эйлер нашел еще по меньшей мере три доказательства этой теоремы, хотя можно почти с полной уверенностью утверждать, что он не знал, кто являлся автором оригинальной теоремы.

Эта теорема лежит в основе самого известного в мире криптографического современного алгоритма с открытым ключом RSA, о чем рассказывается в приложении 6.

МАРЕН МЕРСЕНН

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное