Читаем Физика для всех. Движение. Теплота полностью

РУДОЛЬФ КЛАУЗИУС (1822–1888) – выдающийся немецкий физик-теоретик. Клаузиус впервые четко сформулировал второй закон термодинамики: в 1850 г. – в виде положения о невозможности самопроизвольной передачи теплоты от более холодного тела к более теплому, а в 1865 г. – с помощью введенного им же понятия энтропии. Одним из первых Клаузиус обратился к вопросам о теплоемкости многоатомных газов и теплопроводности газов. Работы Клаузиуса по кинетической теории газов способствовали развитию статистических представлений о физических процессах. Клаузиусу принадлежит ряд интересных работ по электрическим и магнитным явлениям.

Второе начало термодинамики позволяет сформулировать ряд общих законов, которым должны подчиняться все тела, как бы они ни были построены. Однако остается еще вопрос, как найти связь между строением тела и его свойствами? На этот вопрос отвечает область физики, которая называется статистической физикой.

Ясно, что при подсчете физических величин, описывающих систему, состоящую из миллиардов миллиардов частиц, совершенно необходим новый подход. Ведь было бы бессмысленно, не говоря уже о том, что и абсолютно невозможно, следить за движениями всех частиц и описывать это движение с помощью формул механики. Однако именно это огромное количество частиц позволяет применить к изучению тел новые «статистические» методы. Эти методы широко используют понятие вероятности событий. Основы статистической физики были заложены замечательным австрийским физиком Людвигом Больцманом (1844–1906). В серии работ Больцман показал, каким образом указанная программа может быть осуществлена для газов.

В 1877 г. логическим завершением этих исследований явилось данное Больцманом статистическое истолкование второго начала термодинамики. Формула, связывающая энтропию и вероятность состояния системы, высечена на памятнике Больцману.

Трудно переоценить научный подвиг Больцмана, нашедшего в теоретической физике совершенно новые пути. Исследования Больцмана подвергались при его жизни насмешкам со стороны консервативной немецкой профессуры: в то время атомные и молекулярные представления считались многими наивными и ненаучными. Больцман покончил жизнь самоубийством, и обстановка, несомненно, сыграла в этом далеко не последнюю роль.

Здание статистической физики было в значительной степени завершено трудами выдающегося американского физика Джозайи Уилларда Гиббса (1839–1903). Гиббс обобщил методы Больцмана и показал, каким образом можно распространить статистический подход на все тела.

Последняя работа Гиббса вышла в свет уже в начале XX века. Очень скромный исследователь, Гиббс печатал свои труды в известиях небольшого провинциального университета. Прошло порядочное число лет, пока его замечательные исследования сделались известными всем физикам.

Статистическая физика показывает путь, следуя по которому можно вычислить свойства тел, состоящих из данного количества частиц. Конечно, не следует думать, что эти методы расчета всемогущи. Если характер движения атомов в теле очень сложен, как это имеет место в жидкостях, то реальное вычисление становится практически неосуществимым.

<p>Мощность</p>

Чтобы судить о возможности машины производить работу, а также о потреблении работы, пользуются понятием мощности. Мощность – это работа, совершенная в единицу времени.

Существует много различных единиц измерения мощности. Системе CGS соответствует единица мощности эрг/с. Но 1 эрг/с – ничтожно малая мощность, и эта единица поэтому для практики неудобна. Несравненно более распространена единица мощности, которую получают делением джоуля на секунду. Эта единица называется ватт (Вт). 1 Вт = 1 Дж/с = 10 7эрг/с.

Когда и эта единица мала, ее умножают на тысячу и пользуются киловаттом.

От старых времен перешла к нам в наследство единица мощности, называемая лошадиной силой. Когда-то на заре развития техники это название имело глубокий смысл. Машина мощностью в 10 лошадиных сил заменяет 10 лошадей – так заключал покупатель, даже если он не имел представления о единицах мощности.

Разумеется, лошадь лошади рознь. Автор первой единицы мощности, по-видимому, полагал, что «средняя» лошадь способна произвести за одну секунду 75 кГм работы. Такая единица и принята: 1 л.с. = 75 кГм/с.

Тяжеловозы способны производить большую работу, в особенности в момент трогания с места. Однако мощность средней лошади скорее близка к 1/2 лошадиной силы.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука