Чем была вызвана эта смена парадигмы? Этому можно привести различные объяснения, в том числе и философские: ученые XVII века не находились под влиянием философии Платона, которой и была обусловлена строгость логического изложения, свойственная греческой математике. Причины этому могут носить исторический характер: XVI и XVII века были временем самых разнообразных открытий: географических (открытие Америки в конце XV века стало результатом не точных логических рассуждений, а, напротив, ошибки Колумба при вычислении радиуса Земли), астрономических (гелиоцентрическая теория Коперника), медицинских (кровообращение) и технических (изобретение книгопечатания Гуттенбергом, создание микроскопа и телескопа).
Математики предпочитали уделять основное внимание разработке новых методов, с помощью которых можно было совершать открытия, не заботясь о логической строгости этих методов. В рамках такого подхода бесконечность использовалась без аристотелевских ограничений, и бесконечно малые и бесконечно большие величины стали применяться очень широко. Изначально они применялись для вычисления площадей, объемов, углов наклона касательных, центров тяжести, максимумов, минимумов и так далее. Решением этих задач занималась целая плеяда математиков начала XVII века, так называемые предшественники математического анализа. Позднее бесконечно малые позволили Ньютону и Лейбницу создать две похожие версии анализа бесконечно малых. Наконец, уже в XVIII веке Эйлер, несомненно, великий знаток бесконечного, создал математический анализ, в котором функции изучались с помощью методов анализа бесконечно малых.
Если говорить об обстоятельствах, способствовавших созданию исчисления, следует упомянуть еще об одном крупном направлении в математике XVII века — аналитической геометрии.
Существует еще одна причина, которую можно назвать теологической, благодаря которой в XVII веке бесконечность стала использоваться более свободно, чем в Древней Греции. Это связано с восприятием бесконечности как атрибута всемогущего христианского Бога. Следуя заветам Аристотеля, богословы отказывали человеку в возможности понять актуальную бесконечность, но им не оставалось другого выбора, кроме как перевести это понятие в область богословия. Так, Фома Аквинский рассматривал Бога как полную и всеобъемлющую актуальную бесконечность.
Такая трактовка достаточно часто встречается в трудах философов XVII века. Подтверждение этому мы находим у Декарта: «Мыслю некоего вышнего Бога — вечного, бесконечного, всеведущего, всемогущего, творца всех сущих, помимо него самого, вещей», а также: «Что же до Бога, я считаю его столь бесконечным, что к его совершенству ничего уже нельзя добавить»; у Спинозы: «Под Богом я разумею существо абсолютно бесконечное (ens absolute infinitum), то есть субстанцию, состоящую из бесконечно многих атрибутов, из которых каждый выражает вечную и бесконечную сущность», а также у Лейбница: «Следует считать, что эта божественная субстанция, неделимая, универсальная и непреложная, не должна иметь пределов и содержать всю реальность, какую только возможно».
Некоторые из этих философов также были учеными и математиками. Лейбниц, например, был одним из создателей математического анализа. Ньютон, еще один из отцов-основателей анализа, также был богословом и верил во всемогущего Бога.