Читаем Хаос и структура полностью

Вот каково диалектическое значение этого первого момента, отмеченного нами в сфере понятия числа. Тут совсем нет ничего удивительного, если мы внимательно отнесемся к процессу счета, который мы сейчас анализировали. В самом деле, все числа натурального ряда являются некими единицами, единичностями, невзирая ни на какую величину данного числа. Двойка есть такая же единичность, как и единица; тройка также есть нечто и, значит, нечто одно, единичность; четверка опять есть нечто, нечто одно, единичность и т. д. Словом, единица, единичность фигурирует решительно во всяком числе, целом, дробном, рациональном, иррациональном и пр.; и, как таковая, она везде совершенно одна и та же, везде она абсолютно самотождественна. И только благодаря такой самотождественной единичности и держится натуральный ряд чисел. Без нее он рассыпался бы вдребезги и нельзя было бы сконструировать ни одного числа.

Конечно, это еще не все. Числа не только тождественны между собой, но еще и различны между собой. Однако диалектическое исследование показывает, что эта самотождественность так же необходима, как и саморазличие.

§ 21. Основная диалектика понятия числа.

Обследуя три первые момента, установленные нами в понятии числа (§ 19), мы, следовательно, находим такое положение дела. Число есть полагание, акт смыслового полагания («это», «одно», «бытие»), требующий для себя инобытия («иное»), в сфере которого и совершается это полагание, и все эти полагания объединены одним непо–лагаемым актом в одно абсолютное тождество («нечто»). Однако это далеко еще не может считаться формулой числа — уже по одному тому, что здесь употреблены понятия «объединения» и «одного», являющиеся числовыми понятиями, так что опять–таки получается частичная тавтология. Эта формула должна быть уточнена. «Объединение» само должно быть разъяснено диалектически. Следовательно, до сих пор мы установили только одно: число есть акт смыслового полагания, требующий для себя инобытия, в сфере которого и совершаются эти акты. Как же описать это до–полагаемое «объединение», в котором совпадают все отдельные акты полагания?

Что это объединение вытекает из абсолютной самотождественности до–полагания, это мы уже знаем. Однако такое объединение есть, собственно говоря, не объединение многого, но абсолютная единичность, в которой нет ничего не только многого, но и вообще раздельного. Необходимо, стало быть, это абсолютное самотождество, или абсолютную единичность, как–нибудь приблизить к реальному натуральному ряду, не уничтожая этой природы, конечно, и не принимая ее. Такое приближение получается тогда, когда мы попробуем объединить «это» (бытие) и «иное» (небытие) в новую структуру, дать их диалектический синтез. Из общей диалектики мы знаем, что бытие и небытие синтезируются в становлении. В становлении есть и то, что именно становится, и принцип небытия того, что становится (поскольку в каждый новый момент становление уже не то, чем оно было в предыдущий момент). Но становление дает становящееся объединение «этого» и «иного», т. е. дает некое постоянно нарастающее осуществление упомянутой абсолютной единичности. В этом процессе, в процессе становления, абсолютное самотождество (абсолютная единичность) не остается недвижным, но бесконечно повторяется, и тут мы уже вплотную подходим к логической конструкции натурального ряда чисел. Итак, объединение бытия и небытия совершается в числе через введение 1) принципа абсолютной самотождественности смыслового полагания и 2) принципа становления этой абсолютной самотождественности. Но и это еще не все.

Если формулировать наблюдаемый здесь нами диалектический процесс во всей логической последовательности, то мы получим такую схему:

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное