Читаем Хаос и структура полностью

Здесь перед нами еще раз появляется воочию тайна западноевропейского мироощущения, покинувшего идеальную действительность абсолютов и погрузившегося в непроглядную тьму становления и вечных исканий. Когда действительность мыслилась и переживалась в своей абсолютно–объективной, личностно–самостоя–тельной субстанциальности, тогда не было особенных причин уходить в становление, а были все причины пребывать в собранном и целомудренно–уравновешенном состоянии. Когда же все объективное бытие было зачеркнуто и человеческий субъект стал усиливаться в самом себе и притом из самого себя исходить все быстрее, тогда, по невозможности физически обнять бесконечную вселенную, волей–неволей пришлось устремиться в вечное искательство и расслоить спокойное обладание истиной на бесконечное и беспокойное ее достижение. Тогда и возникла непреодолимая потребность, своего рода метафизическая страсть созерцать, наблюдать, изучать и фиксировать не устойчивые структуры природы и духа, но их становящуюся стихию, не числа и вещи в их законченном стройном бытии, но числа и вещи в их бесконечно стремящемся инобытии. И так как нельзя же было настолько погрузиться в становление, чтобы потерять всякую мысль и расстаться с самой способностью расчленять, обобщать и теоретизировать, то и были созданы такие методы мысли, которые бы максимально соответствовали алогически–становящемуся бытию, и такая математика, которая, сохраняя свою точность и четкость форм, говорила бы не о стройном и законченном архитектурном целом, но о вечно рвущемся, вечно бесконечном стремлении. Производная и есть эта точная, четкая, максимально–логическая форма и метод мысли для познания всегда неточного, всегда спутанного и нечетного, максимально алогического становления и изменения. В этом вся ее тайна. И в этом ее совершенно своеобразный культурно–исторический строй; и, можно сказать, в этом — метафизическая страсть, владевшая и владеющая всеми, кто мыслит и действует инфините–зимально, кто мыслит и действует как вечно стремящийся и никогда ненасытный Фауст.

8. Дифференциал и интеграл. Вся рассмотренная нами до сих пор картина осуществлялась между величинами и у. Мы отметили три особых момента: у, Ах и у\ связывая их одним отношением[229].

=y'

Что такое и dx, этого мы сейчас можем и не разъяснять, так как это есть просто независимое переменное, a dx—то его приращение, в силу которого оно вступает в процесс становления. Так как здесь идет речь о независимых величинах, о произвольных величинах, то, очевидно, весь наш интерес должен относиться к тому, что от них зависимо, и к самой форме этой зависимости. Общее понятие нам также известно. Но уже это dy может получить более точное определение из соответствующего видоизменения вышеданной формулы производной. А именно, из нее вытекает, что

dy=y'dx.

Иначе говоря, оказывается, что о dy можно судить на основании у' и dx, т. е. приращение функции зависит от производной и от приращения аргумента. Здесь, однако, необходимо соблюдать более точный способ рассуждения и выражения, и мы получаем понятие дифференциала.

Прежде всего dx, приращение независимого переменного, стремящееся к нулю, в отличие от Ах, от приращения, вообще называется дифференциалом независимого переменного. Дифференциал аргумента есть, следовательно, бесконечно–малое его приращение. Соответственно необходимо проводить различие и между приращениями функции. Когда растет аргумент, соответственно растет и функция; и в общем случае, когда не становится вопрос о характере этих приращений, приращение функции мы обозначаем через y. Однако нас интересует именно бесконечно–малое наращение аргумента. Тогда соответственно получит специфическую окраску и приращение функции. Вот это–то приращение функции в условиях бесконечно–малого нарастающего аргумента и называется дифференциалом функции; и оно есть произведение производной на бесконечно–малое приращение аргумента (т. е. y'dx).

Но и в этом определении еще не выявляется с полной отчетливостью и выпуклостью смысловая структура дифференциала. Это определение есть ведь не что иное, как перефразировка логических моментов, входящих в понятие производной. Чтобы выявить наружу этот скрытый принцип дифференциала, представим себе процессы, дающие производную, более подробно.

Если разница

стремится к нулю и есть величина бесконечно–малая, то, обозначая ее через , получаем

Левая часть этого равенства есть общее приращение функции Ау. В правой же части f'(x)dx есть, по предыдущему, дифференциал функции, dy. Стало быть, это равенство можно переписать так:

y = dy + edx,

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное