Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

Для того чтобы проиллюстрировать поведение одномерного клеточного автомата, давайте нарисуем ряд с одной живой клеткой (поколение 0), а затем применим указанное выше правило к каждой клетке для создания нового ряда, расположенного ниже (поколение 1). Затем применим это правило к каждой клетке данного ряда, чтобы получить следующий новый ряд (поколение 2), и т. д. На представленном рисунке показано, что при этом произойдет. (Обратите внимание, что вершина треугольника — это живая клетка первого ряда, а каждый новый ряд — следующее поколение, в отличие от игры «Жизнь», где вся сетка образует одно поколение. Я опустил на рисунке саму сетку, чтобы полученная конфигурация была видна более четко.) В итоге мы получим прекрасный математический зиккурат, известный как «треугольник Серпинского», — фрактальную структуру, состоящую из вложенных треугольников.

Существует 8 комбинаций клетки и ее соседей, а также два возможных состояния (живая или мертвая клетка), а значит, есть 28 = 256 разных наборов «генетических правил» для одномерных клеточных автоматов. Эти правила пронумерованы от 1 до 256. На представленном выше рисунке показано правило 90, порождающее упорядоченные фигуры. Другие правила, такие как правило 30, более причудливы. Это правило, а также конфигурация, которую оно порождает, начиная с одной живой клетки, проиллюстрировано на рисунке ниже. Данная конфигурация представляет собой совокупность упорядоченных и хаотичных фрагментов. Зигзагообразная корка на левой боковой поверхности демонстрирует упорядоченность. Однако по мере передвижения направо мы видим неупорядоченную бугристую поверхность, состоящую из треугольников самых разных форм и размеров.

На визитных карточках Стивена Вольфрама изображен рисунок фигуры, которую порождает правило 30. Когда я встретился с ним, он вынул такую визитку из бумажника и дал мне. Мы расположились в главном офисе его компании Wolfram Research, находящемся в городе Шампейн. У Вольфрама лицо обладающего необыкновенными математическими способностями ребенка, достигшего средних лет: круглое и бледное, с хохолками волос вокруг типичной профессорской макушки. Во время разговора он пристально всматривался куда-то, думая о чем-то своем, а его глаза за стеклами очков мерцали, подобно электронному дисплею, демонстрируя неустанную работу мозга. Вольфрам рано начал научную карьеру, опубликовав свою первую исследовательскую работу еще во время учебы в Итоне в 1970-х. Когда ему исполнилось немногим более двадцати лет, он уже работал в Институте перспективных исследований в Принстоне. Став одним из первых новообращенных в компьютерную веру, он разработал язык программирования, который лег в основу системы компьютерной алгебры Mathematica — пакета программ, позволяющих чертить кривые и решать уравнения. В настоящее время она широко используется в сфере образования и разных отраслях экономики. С 1987 года Вольфрам возглавляет компанию Wolfram Research, которая благодаря успеху системы Mathematica дала ему возможность проводить собственные научные исследования независимо от университетов.

Правило 30: его генетические законы, его эволюция после 50 поколений и эволюция после более 200 поколений

Вольфрам первым в восьмидесятых годах достаточно глубоко изучил одномерные клеточные автоматы; нумерация правил от 1 до 256 берет свое начало именно в его работе. Когда Вольфрам увидел правило 30, это было подобно удару молнии в его научной интуиции. «Это самое удивительное, с чем я когда-либо встречался в науке», — сказал он. Вольфрам был поражен тем, что такое простое правило способно сгенерировать столь сложную конфигурацию. Он внимательно проанализировал колонку, расположенную под исходной живой клеткой в первом ряду. Если взять за основу то, что живая клетка — это 1, а мертвая — 0, то эта колонка состояла из таких клеток: 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0… В этом не было никакой закономерности. К большому удивлению Вольфрама, стандартные статистические тесты показали, что это абсолютно произвольная последовательность. Правило 30 полностью детерминировано, однако конфигурация ячеек в центральном столбце настолько непредсказуема, что ее невозможно отличить от последовательного подбрасывания монеты. (Вольфрам запатентовал правило 30 как генератор случайных чисел и применил его в системе Mathematica.)

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное