Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

Прямой угол (right angle): четверть оборота, или 90 градусов.

Прямоугольная система координат (cartesian coordinates): схема координатной плоскости, в которой каждая точка определяется ее положением по горизонтали и вертикали. Как правило, прямоугольная система координат изображается в виде двух взаимно перпендикулярных осей, пересекающихся в точке (0, 0).

Равносторонний треугольник (equilateral triangle): треугольник с тремя равными сторонами.

Рулетта (roulette): кривая, которую образует точка на катящемся колесе.

Ряд Фурье (Fourier series): сумма (возможно, бесконечного количества) синусоид, сложение которых образует рассматриваемую волну.

Самоподобие (self-similarity): свойство объекта, в точности или приближенно совпадающего с частью самого себя.

Синус (sine): тригонометрическая функция, выражающая отношение противоположной стороны прямоугольного треугольника к гипотенузе.

Синусоида (sinusoid): кривая, имеющая форму синусоидальной волны.

Синусоидальная волна (sine wave): кривая, образованная посредством вертикального смещения точки, вращающейся по кругу.

Степенная зависимость (power law): две переменные находятся в степенной зависимости, если одна из них прямо или обратно пропорциональна степени другой.

Тангенс (tangent): тригонометрическая функция, выражающая отношение противоположной стороны прямоугольного треугольника к прилежащей стороне.

Теорема (theotrem): утверждение, которое не является самоочевидным, но доказано методом дедукции.

Теория множеств (set theory): раздел математики, который изучает свойства множеств и их способность стать основой для арифметики.

Триангуляция (triangulation): измерение расстояний с помощью тригонометрических функций.

Тригонометрия (trigonometry): раздел математики, изучающий тригонометрические функции и их использование.

Факториал (factorial): факториал целого числа — это произведение всех целых чисел от 1 до этого числа включительно. Например, факториал числа 5, который записывается как 5! равен 5 × 4 × 3 × 2 × 1 = 120.

Фокус (focus): основная точка, которая используется при построении конических сечений.

Форма (shape): внешняя геометрическая конфигурация объекта, не зависящая от его размера и положения в пространстве.

Фрактал (fractal): объект, который обладает свойством самоподобия.

Хорда (chord): отрезок, соединяющий две точки окружности.

Числовая ось (number line): геометрическая интерпретация чисел, расположенных по порядку на непрерывной прямой, простирающейся до минус бесконечности слева и до плюс бесконечности справа от ноля, находящегося посредине.

Целое число (whole number): в контексте данной книги — любое положительное число 1, 2, 3…

Циклоида (cycloid): траектория движения точки, находящейся на ободе колеса, которое перемещается по прямой.

Экспонента (exponent): см. показатель степени.

Экспоненциальный рост/спад (exponential growth/decay): возрастание или убывание величины, при котором скорость роста (спада) пропорциональна значению самой величины.

Эксцентриситет (eccentricity): степень отклонения конического сечения от окружности.

<p><strong>Приложение 1</strong></p>

Логарифм можно определить следующим образом.

Если a = 10b, то логарифм числа a равен b и записывается в таком виде[186]:

log а = b

Другими словами, если число а выражено в виде степени 10, то логарифм числа а — это показатель степени. Вот некоторые простые значения логарифмов:

log 10 = 1, поскольку 10 = 101

log 100 = 2, поскольку 100 = 102

log 1000 = 3, поскольку 1000 = 103

А вот таблица логарифмов чисел от 1 до 10:

log 1 = 0

log 2 = 0,301

log 3 = 0,477

log 4 = 0,602

log 5 = 0,699

log 6 = 0,778

log 7 = 0,845

log 8 = 0,903

log 9 = 0,954

log 10 = 1

Если мы отметим логарифмы чисел от 1 до 10 на числовой оси, разместив их в соответствии с их значениями, то получим логарифмическую шкалу от 0 до 1. Чем дальше по оси находятся логарифмы, тем плотнее они расположены.

На этой шкале я также отметил расстояние между логарифмами. Вы узнаете в них проценты из закона Бенфорда. Иными словами, если я случайным образом выберу на этой шкале точку от 0 до 1, вероятность того, что она попадет в интервал от log 1 до log 2, составляет 30,1 процента, в интервал от log 2 до log 3 — 17,6 процента и т. д.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное