Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

Метод простаферезиса вдохновил шотландца Джона Непера на поиск еще более эффективного способа преобразования умножения в сложение, что в 1614 году привело к открытию логарифма. Вместо умножения двух чисел теперь можно было сложить их логарифмы. Логарифмы Непера существенно упростили процесс умножения, из-за чего метод простаферезиса утратил популярность. Тем не менее на протяжении нескольких десятилетий триумфа прямоугольный треугольник — квинтэссенция геометрии — играл двойную роль в качестве невидимого оружия арифметики.

Хотя треугольники, несомненно, весьма полезны по отдельности, в командной игре они особенно эффективны. Если нарисовать сеть треугольников (как показано на рисунке ниже) и измерить в ней все углы, то достаточно определить точную длину одной линии, чтобы рассчитать длину всех остальных линий сети. Предположим, нам известна точная длина линии, выделенной жирным; обозначим ее как l. Тригонометрическое тождество, которое принято называть теоремой синусов, дает нам формулу расчета длины двух других сторон треугольника:

где α — угол, противоположный жирной линии, β и γ — два других угла треугольника. Поскольку все углы в треугольниках сети известны, на основании длины каждой очередной линии можно вычислить длину двух других линий — и так далее, пока не будет известна длина каждой линии сети. Этот метод применим к любым треугольникам, а не только к прямоугольным.

В 1533 году голландский математик Гемма Фризиус понял, что метод триангуляции как нельзя лучше подходит для картографии, поскольку измерять углы гораздо легче, чем большие расстояния[69]. Его идея состояла в том, чтобы выбрать точки на местности так, чтобы от каждой из них было видно две других, и построить таким образом сеть треугольников. Он измерил углы между точками с помощью теодолита — круглого транспортира на подставке. Определив длину базисной линии, Гемма Фризиус смог рассчитать все остальные расстояния, используя тригонометрические таблицы, а затем нарисовал точную карту местности.

Триангуляция

Франция стала первой страной, в которой триангуляция была выполнена по всей территории, и произошло это в 1668 году. Единственная сложная задача в любом виде триангуляции заключается в измерении первого расстояния. Аббат Жан Пикар взял за основу участок прямой дороги от Вильжюиф до Жувиньи длиной в 11 километров, который тщательно измерил с помощью деревянных мерных реек. Затем Пикар отправился на север, используя в качестве вершин треугольников такие ориентиры, как часовые башни и вершины холмов, и измеряя только углы между ними. Добравшись до Атлантического океана, Пикар обнаружил, что побережье гораздо ближе расположено к Парижу, чем считалось раньше. «Твоя работа стоила мне приличной части моих владений!» — фыркнул Людовик XIV. Начатый Пикаром процесс триангуляции продолжался еще столетие после его смерти, пока территорию Франции не покрыли четыре сотни треугольников. Знаменитая карта Франции, составленная в итоге, содержала больше деталей, чем любая другая из созданных ранее карт, и была выполнена почти в том же масштабе, что и стандартные туристические карты Michelin, доступные в наше время.

Французы испытывали amour fou — безумную любовь к треугольникам. В 1735 году Людовик XV отправил две команды геодезистов-триангуляторов в противоположные концы Земли, для того чтобы решить важный научный спор. Земля — неидеальная сфера. Шли жаркие дискуссии вокруг того, какую форму она имеет — сплюснутую у полюсов (как грейпфрут) или на экваторе (как лимон). Эта тема стала предметом раздора между британцами, ратующими за первое, и французами, которые с ними не соглашались. Французы поняли, что можно правильно определить, на какой именно плод похожа Земля, сравнив расстояние, которое покрывает на поверхности Земли один градус широты у Северного полюса и у экватора. Если бы Земля имела форму идеальной сферы, длина одного градуса широты была бы везде одинаковой и составляла бы окружности Земли. Однако, если бы у полюсов это расстояние было больше, это означало бы, что земной шар сплюснут у полюсов, а если меньше, значит, у экватора. Французы отправили одну экспедицию в Лапландию, а другую — в сторону современного Эквадора в Южной Америке. Наблюдая за звездами, они рассчитали начальную широту, а затем в Лапландии начали строить сеть триангуляции строго на север, а в Эквадоре — строго на юг. В конечной точке триангуляции они снова определили широту посредством наблюдений за звездами. После длительной борьбы со снежными бурями и москитами в Скандинавии и высотной болезнью в Андах две группы пришли к выводу, что в Лапландии один градус широты длиннее. Британцы оказались правы: наш мир действительно похож на большой pamplemousse («грейпфрут» по-французски).

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное