Читаем Магия чисел полностью

Этот метод работает не только для 7, но и для любого нечетного числа, кроме оканчивающегося на 5. Например, чтобы проверить, делится ли 8792 на 13, вычитаем 4 х 13 = 52 из 8792 и получаем 8740. Опуская 0, имеем 874. Затем прибавляем 2 х 13 = 26, выходит 900. Удаление двух нулей оставляет нас с числом 9, которое, очевидно, не кратно 13. Таким образом, 8792 не делится на 13.

УПРАЖНЕНИЕ: ПРОВЕРКА НА ДЕЛИМОСТЬ

В этом упражнении будьте особенно внимательны при проверке делимости на 7 и 17. Остальное не должно представлять для вас трудностей.

Делимость на 2

1. 53 428 2. 293 3. 7241 4. 9846

Делимость на 4

5. 3932 6. 67 348 7. 358 8. 57 929

Делимость на 8

9. 59 366 10. 73 488 11. 248 12. 6111

Делимость на 3

13. 83 671 14. 94 737 15. 7359 16. 3 267 486

Делимость на 6

17. 5334 18. 67 386 19. 248 20. 5991

Делимость на 9

21. 1234 22. 8469 23. 4 425 575 24. 314 159 265

Делимость на 5

25. 47 830 26. 43 762 27. 56 785 28. 37 210

Делимость на 11

29. 53 867 30. 4969 31. 3828 32. 941 369

Делимость на 7

33. 5784 34. 7336 35. 875 36. 1183

Делимость на 17

37. 694 38. 629 39. 8273 40. 13 855

ОБЫКНОВЕННЫЕ ДРОБИ

Если вы в состоянии управиться с целыми числами, то арифметические действия с дробями покажутся вам почти такими же легкими. В этом разделе мы сделаем обзор основных методов сложения, вычитания, умножения, деления и сокращения обыкновенных дробей. Те, кто знаком с дробями, могут спокойно его пропустить.

Умножение обыкновенных дробей

Чтобы перемножить две обыкновенные дроби, нужно просто перемножить их числители (верхние числа), а затем знаменатели (нижние числа). Например:

2/3 х 4/5 = 8/15

1/2 х 5/9 = 5/18

Что может быть проще! Попробуйте следующие упражнения, прежде чем двигаться дальше.

УПРАЖНЕНИЕ: УМНОЖЕНИЕ ОБЫКНОВЕННЫХ ДРОБЕЙ

1. 3/5 х 2/7

2. 4/9 х 11/7

3. 6/7 х 3/4

4. 9/10 х 7/8

Деление обыкновенных дробей

Деление дробей столь же легкое, как и умножение. Однако оно требует одного дополнительного действия. Сначала переверните вторую дробь с ног на голову (это называется обратная дробь), а затем умножайте. Например, обратная дробь для 4/5 будет 5/4. Следовательно,

2/3 ÷ 4/5 = 2/3 х 5/4 = 10/12

1/2 ÷ 5/9 = 1/2 х 9/5 = 9/10

УПРАЖНЕНИЕ: ДЕЛЕНИЕ ОБЫКНОВЕННЫХ ДРОБЕЙ

Теперь ваша очередь. Поделите эти дроби.

1. 2/5 ÷ 1/2

2. 1/3 ÷ 6/5

3. 2/5 ÷ 3/5

Сокращение обыкновенных дробей

Дроби можно рассматривать как маленькие задачки на деление. Например, 6/3 то же самое, что и 6 ÷ 3 = 2. Дробь 1/4 то же самое, что и 1 ÷ 4 (или 0,25 в десятичной форме). Известно, что если умножить любое число на 1, то это число не изменится.

Например, 3/5 = 3/5 х 1. Но если заменить 1 дробью 2/2, то получим 3/5 = 3/5 х 1 = 3/5 х 2/2 = 6/10. Следовательно, 3/5 = 6/10.

По такому же принципу, заменив 1 дробью 3/3, получим 3/5 = 3/5 х 3/3 = 9/15. Другими словами, если мы умножаем числитель и знаменатель на одно и то же число, то получаем дробь, равную исходной.

Вот еще пример:

2/3 = 2/3 х 5/5 = 10/15

Верно и то, что, деля числитель и знаменатель на одинаковое число, мы получаем дробь, равную исходной.

Например:

4/6 = 4/6 ÷ 2/2 = 2/3

25/35 = 25/35 ÷ 5/5 = 5/7

Это сокращение дроби.

УПРАЖНЕНИЕ: СОКРАЩЕНИЕ ДРОБЕЙ

Найдите дробь со знаменателем 12, равную дробям, представленным ниже.

1. 1/3 2. 5/6 3. 3/4 4. 5/2

Сокращение дробей.

5. 8/10 6. 6/15 7. 24/36 8. 20/36

Сложение дробей

Это действие можно считать простым, когда знаменатели равны. В этом случае складываются числители и сохраняется прежний знаменатель.

Например:

3/5 + 1/5 = 4/5; 4/7 + 2/7 = 6/7

Иногда можно упростить ответ. Например:

1/8 + 5/8 = 6/8 = 3/4

УПРАЖНЕНИЕ: СЛОЖЕНИЕ ДРОБЕЙ (С РАВНЫМИ ЗНАМЕНАТЕЛЯМИ)

1. 2/9 + 5/9

2. 5/12 + 4/12

3. 5/18 + 6/18

4. 3/10 + 3/10

Более коварный случай — различные знаменатели. Когда знаменатели не равны, нужно заменить исходные дроби дробями с равными знаменателями.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное