Читаем Необыкновенная жизнь обыкновенной капли полностью

Все были довольны — «момент истины», когда реаль­ность совпадает с предсказанием теории, доставляет какую-то детскую радость. Дескать, фокус удался, хотя вы читали о нем и знаете, как это делается. На другой день я вычислил диаметры капель по формуле радуги, через измеренное угловое расстояние между ее первым и вторым кольцом. Потом мы обработали пробу капель, уловленных в касторовое масло,— данные обоих изме­рений неплохо согласовывались.

Итак, мои радужные надежды оправдались. Метод давал величину, близкую к среднеарифметической вели­чине диаметров капель в спектре распыливания.

Природа образует радугу не на любой жидкости — все зависит от величины коэффициента преломления. Но керосиновая радуга оказалась в числе «разрешен­ных». Это уже сулило практический результат, так как керосин применялся в ТРД. (Правда, запротестовали пожарники, требуя для опытов более сложной взры­вобезопасной установки.) Конечно, до решения всей капельной проблемы было еще очень далеко. Для понима­ния физики распыливания и создания расчета смесеоб­разования требовалось определение всего спектра час­тиц. Но теперь хоть можно было определять и довольно просто средние значения диаметров капель спектра.

Глава II

ОХОТА ЗА КАПЛЕЙ

В поисках уравнений

Начальник одной из лабораторий ЦАГИ и наш научный руководитель Генрих Наумович Абрамович предложил мне написать статью. Я писал ее в состоянии внутрен­него подъема. Мне нравилась радуга, ее теория, мир капель и вообще весь мир. Статья содержала такой перл: «Теория Эри по своей красоте и изяществу может соперничать с явлением, ею описываемым». Мой това­рищ по работе инженер Л. А. Клячко, острослов, не без ехидства выдернул эту фразу из текста, как смешную редиску из грядки, и бегал с нею по всем комнатам, по­тешая сотрудников. Через несколько лет мы поквита­лись. Отыскался в его статье соответствующий перл: «Кривая концентраций топлива для форсунки имеет двугорбый характер» (автор имел в виду наличие двух максимумов).

Нам, начинающим, повезло на начальников и науч­ных руководителей. Генрих Наумович Абрамович, сам ненамного старше нас, был тогда уже видным исследо­вателем и автором известных работ по теории свобод­ной струи. Много позже на одном из его юбилеев кто-то сострил: «50 лет в струю», вкладывая в эти слова два подтекста. Один говорил о преданности делу — по ассо­циации с книгой генерала Игнатьева «50 лет в строю», другой — об умении юбиляра находить нужные, акту­альные задачи. Г. Н. Абрамович — один из создателей советской школы аэрогидромеханики. «Генрих», как мы его звали, живой, привлекательный, руководил ненавяз­чиво, требуя от нас лишь инициативы и самостоятель­ности. Генрих Наумович просто и наглядно объяснял суть сложных аэродинамических явлений. «Мы здесь рассудим по-нашему, по-плотницки»,— говорил он, пояс­няя образование ударной волны в сверхзвуковом тече­нии. Его книга «Прикладная газовая динамика» стала настольной для поколений студентов и инженеров.

В то время он разрабатывал теорию центробежной форсунки, давно и широко применявшейся в технике, но пока не подвластной инженерному расчету. А без фор­сунки нет ракеты, дождевального агрегата, реактивного самолета, котельной установки и еще многого.

Есть в инженерной практике человечества счастли­вые находки, «вечные» устройства, решающие задачу простейшим и рациональнейшим образом: колесо, болт с гайкой. Таково и сопло Лаваля — канал в виде растру­ба на выходе реактивного двигателя, где газ разгоняет­ся до сверхзвуковой скорости. В силу привычки мы не удивляемся античной красоте простых и умных геоме­трических форм. Кстати, древние греки могли бы полу­чить сверхзвуковую струю воздуха, надув бурдюк, выдерживающий давление около двух атмосфер, и подо­брав эмпирически сопло — раструб с определенной пло­щадью горловины, меньшей площади выхода.

Центробежная форсунка — младшая сестра в уни­кальном семействе устройств, которые скупыми сред­ствами, компактно и внешне просто решают сложную техническую задачу. Как пустить жидкость широко рас­ходящимся конусом мелких капель, чтобы полнее на­сытить некий объем? Проще всего подать ее танген­циально, то есть по касательной к окружности внутрь отрезка цилиндрической трубы, один конец которой за­крыт, другой — сужен до малого отверстия (рис. 7). По­лучится камера закручивания, в ней жидкость пойдет по винтовым линиям. На выходе они «расплетутся», об­разовав факел, или конус распыливания. У самого корня это не совсем конус, а поверхность более сложной фор­мы: однополостной гиперболоид (рис. 8).

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука