Читаем Необыкновенная жизнь обыкновенной капли полностью

Обычные виды топлива обладают заметной вяз­костью. Новые (для того времени) реактивные двигате­ли космических ракет и больших авиалайнеров, где чис­ло и разнообразие форсунок все возрастали, требовали более точных расчетов. Конструкция самой форсунки усложнялась, она обрастала различными клапанами, изготовлялась по все более высокому классу точности и становилась довольно дорогой деталью. Теория форсун­ки на основе идеальной жидкости сделала свое важное дело, но теперь уже не всегда давала нужную точ­ность.

Исследователи приняли эстафету дальнейшего дви­жения от теории идеальной жидкости к теории вязкой жидкости применительно к процессам в форсунке. Ин­женер Л. А. Клячко проводил испытания центробежной форсунки на топливах разной вязкости. Сначала в фор­сунку подавалось маловязкое топливо — бензин, затем более вязкое — керосин. Первые же опыты, к его удив­лению, показали парадоксальный результат: для керо­сина коэффициент расхода оказался больше, чем для бензина. Клячко сказал готовившему эксперимент ме­ханику:

— Быть этого не может: вязкость больше, а расход возрос. Что-то здесь не так! Вы, наверное, плохо уплот­нили форсунку, и керосин где-то подтекал.

— Форсунка собрана правильно, герметичность я га­рантирую,— с достоинством ответил опытный механик.

Повторный эксперимент (правильность сборки фор­сунки теперь проверяли вместе придирчивый инженер и задетый за живое механик) дал все тот же результат: на керосине коэффициент расхода больше, чем на бен­зине. Провели опыт с еще более вязким топливом — соляровым маслом. Коэффициент расхода опять возрос.

После мучительных раздумий инженер нашел раз­гадку парадоксального явления. Действительно, под влиянием трения уменьшается закрутка потока в каме­ре. И тем сильнее, чем больше вязкость топлива. Момент количества движения уже не сохраняется, как в идеаль­ной жидкости. Та же скорость вращения на границе воз­душного вихря достигается теперь при уменьшенном моменте количества движения, то есть на меньшем ра­диусе r. Короче, трение, слегка «съедая» вращение, при­водит к лучшему заполнению сечения сопла, «накручи­вая» более толстое жидкое кольцо. Кроме того, оказалось, что трение перераспределяет энергию потока: большая доля идет на определяющее расход поступа­тельное движение со скоростью w, меньшая остается вращению. Поэтому с ростом вязкости жидкости коэф­фициент расхода центробежной форсунки возрастает. Согласно новой теории, расход получали больше, а угол распыливания меньше, чем по старой теории. Но опыт и расчет теперь согласовывались значительно лучше.

Форсунка вдобавок ко всем другим своим полезным качествам оказалась еще простым и универсальным на­глядным пособием: кажется, нет такого закона гидро­динамики, который нельзя было бы на ней продемон­стрировать.

Теперь, когда учет вязкости реальной жидкости ри­сует картину, более близкую к фактической, мы можем вернуться к нашему вопросу. Критическое сечение в соп­ле форсунки и в нем бесконечно крутой гидравлический прыжок действительно получаются из уточненной тео­рии, однако полностью до реальной картины она «не до­тягивает». На самом деле явление гидравлического прыжка развивается не в одном сечении, а на некото­ром конечном интервале, так что отвесного прыжка жидкости, бесконечной крутизны нет нигде. Причина нового, более тонкого расхождения теории с реаль­ностью состоит в том, что эффект вязкости хотя и от­ражен теперь, но далеко не полно — только через изме­нение момента количества движения, в то время как структура поля скоростей не учитывалась. Гидравличе­ский же прыжок обычно сопровождается резким изме­нением всей картины потока, отрывом пограничного слоя от стенки, возникновением обратных токов и за­вихрений и принадлежит к классу сложнейших явлений скачкообразной смены одного режима устойчивого тече­ния качественно другим. Среди других гидромеханиче­ских эффектов и этот, конечно, выражается в символах общих уравнений вязкой жидкости (уравнений Навье—Стокса), но вывести его из уравнения пока не удается из-за математических трудностей и неполной ясности относительно влияния на процесс граничных условий.

Наше повествование коротко и упрощенно отразило ход исследования одной из проблем прикладной гидро­механики, связанной с принципом максимума расхода. В теории форсунки существуют и другие подходы, но изложенная методика нашла наибольшее признание в литературе по авиационной, ракетно-космической техни­ке, теплоэнергетике и т. д.

Знания, которые изложены в учебниках, всегда вы­глядят гладкими, логичными, обоснованными. Реаль­ный же путь живой, развивающейся науки изобилует зигзагами, интуитивными догадками, нестрогими ре­зультатами, поскольку интуиция — часто единственный способ перенестись через разрыв, не имеющий пока ло­гического мостика. Даже в наилогичнейшей из всех наук — математике — теоремы обычно сначала высказы­ваются, часто угадываются, а потом доказываются, по­рой долго, порой очень долго, а возможно, не доказыва­ются никогда, как, например, теорема Ферма.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука