Читаем Прикладные аспекты аварийных выбросов в атмосферу полностью

Множество факторов, которое необходимо учитывать в моделях, находится на стыке ряда исследовательских программ [18–23], реализуемых в рамках наук о Земле. Комплексный характер подобных программ и наличие сложных прямых и обратных связей между гидрометеорологическими процессами, загрязнением природных сред, биосферой активно стимулируют разработки теоретических основ и системной организации математических моделей. На этом более высоком уровне системная организация оперирует с «простейшими» моделями как с элементарными объектами.

Применительно к математическому моделированию процессов возникновения и развития в атмосфере аварийных выбросов загрязняющих и токсичных веществ будем исходить из моделей физических процессов. К ним относятся модели гидротермодинамики атмосферы различных пространственно-временных масштабов, а также модели переноса и трансформации примесей, различные способы параметризации и т. п. В литературных источниках имеется достаточно много подобных разработок [21–23]. Их физический смысл и различия между ними зависят от конкретной постановки задач. В любом случае применительно к решению задачи методами численного моделирования исходят из понятий функций состояния и параметров.

Для удобства и краткости изложения воспользуемся операторной формой [19]. Обозначим векторную функцию состояния через . К числу ее составляющих относятся поля гидрометеорологических элементов и концентраций загрязняющих примесей.

Вектор параметров обозначим . Параметрами являются коэффициенты уравнений, параметры области интегрирования Dt сеточной области Dht, области размещения наблюдательных систем Dmt , начальные значения функций состояния, распределения и мощности источников тепла, влаги и других примесей и компонентов.

В операторном виде математическая модель описываемого процесса имеет следующий вид:

Здесь:

 — нелинейный дифференциальный оператор матричной структуры, действующий на множествах функций  и ;

Q(Dt) — пространство функций состояния, удовлетворяющих граничным условиям;

R(Dt) — область допустимых значений параметров;

В — диагональная матрица, в которой все или часть элементов могут быть нулями;

— источники;

 —, где D — область изменения пространственных переменных;

 — интервал изменения времени t.

Входящий в соотношение (1.1) оператор  — определяется уравнениями гидротермодинамики системы атмосфера — почва — вода, переноса и трансформации примесей, а также условиями на границах раздела.

Граничные и начальные условия записываются для конкретного физического содержания модели.

В частности, для математической модели переноса примесей в атмосфере, которая входит в состав уравнения (1.1) в качестве составной части, получаем уравнение

Эта модель учитывает процессы возможной трансформации веществ, турбулентного обмена и обменных процессов между природными средами: водой, воздухом и почвой.

В соотношении (1.2):

 — концентрация примесей;

 — вектор скорости с компонентами u,v,w в направлении пространственных координат  соответственно;

 и  — коэффициенты турбулентности в горизонтальных (x1,x2) и вертикальном (х3 = z) направлениях;

индексом s отмечены операторы, действующие в горизонтальных направлениях;

 — операторы трансформации примесей;

 — источники примесей (одновременно учитываются источники естественного и антропогенного происхождения).

Отметим, что операции с вектором  реализуются покомпонентно, т. е. уравнение (1.2) представляет собой систему n уравнений в частных производных. Оператор  — в общем случае нелинейный. Он определяет скорость изменения концентраций ci за счёт химических и фотохимических реакций. Скорости вертикального движения частиц (оседания или всплытия) учитываются функцией w. Примеси — многокомпонентны, количество компонент — входной параметр модели. На практике параметр модели определяется количеством химических веществ, участвующих в реакциях.

Модель дополняется начальными и граничными условиями:

Здесь:

R1 и R 2 — некоторые операторы;

 — источники и стоки примесей на верхней и нижней границах области D.

Для глобальной модели задаются условия периодичности всех функций на поверхности сферы, а для моделей на ограниченной территории — условия на поля концентраций на боковых границах области Dt.

Процессы взаимодействия примесей с подстилающей поверхностью, включая обменные процессы между воздухом, водой, почвой и растительностью, описываются оператором . Причем вектор концентраций  включается в вектор-функцию состояния системы в целом, а коэффициенты уравнений (1.2) и граничных условий (1.4), (1.5), а также начальные условия (1.3), функции источников  и константы скоростей газофазных реакций в операторе  включаются в вектор параметров.

Отметим, что в вычислительных моделях [19] используется расширительное понятие параметров, включая в их число не только численные значения некоторых величин, но и алгоритмы их вычисления. Тогда в число параметров попадают схемы реакций, алгоритмы вычислений радиационных потоков тепла, коэффициентов турбулентного обмена, а также коэффициентов в моделях взаимодействия воздушных масс с подстилающей поверхностью.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное