В следующей серии экспериментов Гриффит смешал безвредные мертвые гладкие бактерии с безвредными живыми морщинистыми бактериями и ввел их мышам. Все мыши погибли. Ни одна из этих форм бактерий не могла убить организм, но их смесь оказалась смертельной. Когда он извлек образцы тканей из мертвых мышей, он обнаружил, что они кишат живыми гладкими пневмококками. По выражению Гриффита, живые морщинистые бактерии «трансформировались» в живые гладкие бактерии. Он объяснил это тем, что некий трансформирующий фактор — сегодня мы называем его генетическим материалом — передался от мертвых гладких бактерий живым морщинистым бактериям, за счет чего они «научились» синтезировать гладкую оболочку. В ходе дальнейших экспериментов бактерии после трансформации в мышах переносились в лабораторную посуду; «новые» гладкие бактерии размножались там и образовывали культуру гладких бактерий, несмотря на то, что являлись потомками трансформированных морщинистых бактерий. Как Гриффит писал в статье, в которой он объявил об этом открытии, «штамм R… превратился в штамм S». Но Гриффит не знал, за счет каких молекул происходило это превращение. Это выяснилось только в 1944 г. в результате новых экспериментов, которые провели ученые, вдохновленные наблюдениями Гриффита[48]. К тому времени кристаллография уже начала рассказывать о строении важных биологических молекул.
В 1930-е гг. все еще считалось, что носителями наследственной информации являются белки, и они стали первыми биомолекулами, которые исследовали при помощи рентгеновской кристаллографии. Кристаллография в итоге показала, что ключевой особенностью этих длинных цепочек из аминокислот является то, каким образом они сворачиваются в сложные трехмерные структуры, которые определяют их биологические свойства.
Первые шаги в этом направлении сделали Джон Бернал (1901–1971) и его коллеги по Кембриджу в 1934 г. Бернал, который в 1920-х гг. работал с Уильямом Брэггом, начал с применения рентгеновской кристаллографии для определения строения графита и бронзы. Но когда он попытался применить эти методы для исследования органических молекул, он столкнулся с проблемой. Кристаллы в основном выращивают в концентрированном растворе, известном как «насыщенный». Кристаллы растут по мере испарения жидкости — как в простых школьных опытах с применением обычной поваренной соли (хлорида натрия) или сульфата меди. Отдельные молекулы или атомы выстраиваются в повторяющиеся ряды «элементарных ячеек» определенного типа, образуя кристаллическую решетку. Исследователи рассчитывали, что смогут получить кристаллы белка таким же способом, позволив очищенному белку выпасть из насыщенного белкового раствора. Но когда белки высушивали, перед тем как подвергнуть рентгеновскому облучению, их структура рассыпалась как карточный домик.
В середине 1930-х гг. оксфордский биохимик Джон Филпот, работавший в то время в Уппсале в Швеции, пытался вырастить кристаллы белка пепсина (пепсин — это пищеварительный фермент, который расщепляет белки в нашей пище). Он приготовил насыщенный раствор с кристаллами, поставил емкость в холодильник в своей лаборатории и уехал отдыхать на лыжный курорт. По возвращении он обнаружил, что его кристаллы очень выросли — некоторые до 2 мм в длину. По чистой случайности лабораторию Филпота тогда же навестил Глен Милликен из Кембриджа, который, по легенде, взглянув на получившийся препарат, сказал: «Я знаю человека, который душу продаст за эти кристаллы». Филпот вырастил их с избытком и великодушно отдал Милликену часть кристаллов прямо в пробирке с насыщенным раствором, чтобы тот отвез ее Берналу в Кавендишскую лабораторию.
В то время Бернал сотрудничал с приглашенной исследовательницей из Оксфорда Дороти Кроуфут (1910–1994), которая позже вышла замуж и стала известна как Дороти Ходжкин. Бернал обнаружил, что влажные свежие кристаллы при облучении поляризованным светом обнаруживают свойство, известное как двойное лучепреломление, что свидетельствует об их упорядоченной кристаллической структуре. Бернал и Кроуфут запечатали подаренные Филпотом кристаллы вместе с раствором в тонкостенной стеклянной трубке (капилляре) и
С самого начала было ясно, что такие снимки в принципе могут пролить свет на структуру самих белковых молекул. Когда Бернал и Кроуфут описывали свой эксперимент в журнале