Читаем Простая одержимость полностью

С апреля по ноябрь того года Геттинген как математический центр был фактически уничтожен. Это коснулось не только евреев, которые занимали должности в университете; под подозрение попадали все, кому приписывалось сочувствие к левым. Математики бежали — большинство в конце концов оказались в Соединенных Штатах. Всего из математического института в Геттингене уехали или были уволены 18 постоянных сотрудников.

Одним из неподчинившихся был Эдмунд Ландау (кстати, единственный профессор математики в Геттингене, посещавший городскую синагогу). Полагаясь на нерушимость прусских законов, Ландау попытался в ноябре 1933 года возобновить чтение лекций по дифференциальному и интегральному исчислению, но научный студенческий совет, узнав о его намерениях, организовал бойкот. Штурмовики в форме не пускали студентов Ландау в аудиторию. Демонстрируя недюжиную отвагу, Ландау потребовал от лидера совета, двадцатилетнего студента Освальда Тейхмюллера, в письменной форме объяснить причины бойкота. Тейхмюллер так и сделал, и это письмо каким-то образом уцелело.

Тейхмюллер был очень одаренным человеком и в действительности стал прекрасным математиком.[144] Из письма ясно видно, что мотивировка бойкота была идеологическая. Тейхмюллер искренне и всем сердцем верил в нацистские доктрины, включая расовую, и ему представлялось совершенно недопустимым, чтобы немецких студентов учили евреи. Мы привыкли воспринимать нацистских активистов как головорезов, люмпенов, приспособленцев и неудачников того или иного сорта, каковыми многие из них в самом деле являлись. Полезным, однако, бывает напоминание, что среди них встречались люди исключительно одаренные.[145]

Убитый горем Ландау уехал из Геттингена и отправился в Берлин, в свой семейный дом. Позже он несколько раз ездил за границу читать лекции, что, по-видимому, доставляло ему огромное удовольствие, однако он не собирался навсегда покидать родную землю и перебираться за границу; он умер своей смертью в Берлине в 1938 году.

Гильберт же умер в Геттингене во время войны — 14 февраля 1943 года, за три недели до своего 81-летия, вследствие осложнений после падения на улице. Не более десятка людей собрались на прощальной службе. Лишь двое из них могли похвастаться значительными математическими достижениями: физик Арнольд Зоммерфельд, бывший старым другом Гильберта, и вышеупомянутый Густав Херглотц. Родной город Гильберта Кенигсберг сровняли с землей во время войны; теперь это российский город Калининград. Геттинген в настоящее время представляет собой обычный провинциальный немецкий университет с сильным математическим факультетом.

III.

Те годы — начало 1930-х, перед тем как сгустился мрак, — подарили нам один из самых романтических эпизодов в истории Гипотезы Римана — открытие формулы Римана-Зигеля.

Карл Людвиг Зигель, сын берлинского почтальона, преподавал во Франкфуртском университете. Состоявшийся ученый, специалист по теории чисел, он прекрасно понимал (как это должен был понимать и любой читавший ее математик), что статья Римана 1859 года представляла собой, в терминологии Эрвинга Гоффмана, с которым мы встречались в главе 4.ii, всего лишь фасад намного более масштабной конструкции, сжатое изложение для публикации гораздо большей по объему работы, проходившей, по-видимому, «за сценой». Поэтому он постарался выкроить как можно больше времени, чтобы провести его в Геттингене, просматривая относящиеся к тому периоду личные математические записи Римана и надеясь найти какие-нибудь зацепки, указывающие на ход мыслей Римана во время его работы над той статьей.

Зигель был вовсе не первым, предпринявшим такую попытку. В 1895 году Генрих Вебер закончил работу над вторым изданием «Собрания трудов» Римана, после чего отдал его бумаги на хранение в университетскую библиотеку. Когда там появился Зигель, бумаги пролежали среди архивов в Геттингене (где они находятся и по сей день, см. главу 22.i) уже 30 лет. Разные исследователи неоднократно предпринимали попытки изучить эти записи, но все в конце концов отступали перед фрагментарным и неорганизованным стилем черновиков Римана, или же, вполне вероятно, им просто не хватало математической квалификации для понимания этих записей.

Зигель был сделан из более крутого теста. Он не отступил и продолжал изучать толстые кипы небрежно исписанных листков и в результате сделал потрясающее открытие, которое и опубликовал в 1932 году в статье под названием «О Nachlass[146] Римана, относящихся к аналитической теории чисел». Это одна из ключевых работ в истории Гипотезы Римана. Чтобы объяснить суть сделанного Зигелем открытия, нам надо вернуться к вычислительной линии повествования — другими словами, к попыткам реально вычислить нули дзета-функции и проверить Гипотезу Римана экспериментально.

IV.
Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное