Читаем Развлечения со спичками полностью

Затем, по мере того, как играющие поочередно берут то из одной, то из другой кучки несколько спичек, последовательные изменения в числе спичек будут такие:

Кто возьмет эту последнюю спичку, тот выигрывает.

Здесь также существует секрет беспроигрышной игры. Доискаться его самому вам едва ли удастся (теория "нима" очень сложна); поэтому мы сообщим его, хотя и без обоснования. Надо играть так, чтобы после вашего хода на столе оставалась одна из следующих семи комбинаций спичек:

Числа подобраны так, что, каково бы ни было первоначальное расположение, всегда возможно привести его к одному из сейчас указанных отнятием спичек из одной кучки. Необходимо только указать еще, что делать, если число спичек и одной из кучек сделалось равным нулю, т.-е. если кучка исчезла.

Тогда надо взять столько спичек, чтобы обе оставшиеся кучки уравнялись по числу спичек. Играя по этим правилам, вы непременно выиграете, т.-е. возьмете последнюю спичку. Например, в сейчас рассмотренном случае, если бы первый ход был ваш, вы должны были бы вести игру так:

<p>IV. Немного арифметики на спичках</p>Из трех — четыре

Задача 27-я

Это — задача-шутка, довольно забавная. На столе лежат 3 спички. Не прибавляя и не ломая ни одной спички, сделайте из этих трех спичек — четыре!

Решение

Вы делаете "четыре", — просто четыре, а не четыре спички — следующим образом (см. рисунки 40 и 41):

Таким же незамысловатым, но для многих неожиданным способом вы могли бы сделать из трех спичек шесть (VI), из четырех — семь (VII) и т. д.

Вот еще образчик задачи-шутки подобного же рода:

3 + 2 = 8!

Задача 28-я

На столе лежат 3 спички. Прибавить к ним еще две и получите… восемь!

Решение

И здесь выручает римская нумерация. Вот ответ:

3 + 2 = 8

Три кучки спичек

Задача 29-я

На столе лежат 48 спичек, распределенные по трем кучкам. Сколько спичек в каждой кучке, вы не знаете. Зато вы знаете следующее: когда из первой кучки переложили во вторую столько, сколько в этой второй кучке имелось, затем из второй в третью столько, сколько в этой третьей имелось, и наконец из третьей в первую столько, сколько в этот момент в первой кучке имелось, — то во всех трех кучках оказалось спичек поровну. Можете ли вы сказать, сколько спичек было в каждой кучке первоначально?

Решение

Задачу нужно решать с конца. Нам говорят, что после всех перекладываний число спичек в кучках оказалось одинаковым. Так как от этих перекладываний общее число спичек во всех трех кучках не изменилось и, значит, осталось прежнее (48), то в каждой кучке после трех перекладываний оказалось по 16 спичек. Следовательно, к концу имеем:

Непосредственно перед этим в 1-ю кучку было прибавлено столько, сколько в ней имелось, т.-е. число спичек в ней было удвоено. Значит, до последнего перекладывания в 1-й кучке было не 16, а 8 спичек; в 3-й же кучке, откуда эти 8 спичек были взяты, имелось 16 + 8 = 24. Теперь у нас такое распределение спичек:

Далее: мы знаем, что перед этим из 2-й кучки было переложено в 3-ю столько спичек, сколько имелось в 3-й кучке. Значит, 24 — это удвоенное число спичек, бывших в 3-й кучке до второго перекладывания. Отсюда узнаем распределение спичек после первого перекладывания:

Легко сообразить, что раньше первого перекладывания, т.-е. до того, как из 1-й кучки было переложено во вторую столько спичек, сколько в этой второй имелось — распределение спичек было такое:

Это и есть первоначальное распределение спичек по кучкам. Нетрудно убедиться, проделав требуемые задачей переложения, что ответ верен.

Еще немного алгебры

Задача 30-я

Перейти на страницу:

Похожие книги