Есть много вариантов задач на сохранение, и маленькие дети проваливают все без исключения. Например, ребенку показывают два одинаковых по размеру глиняных шарика и просят подтвердить, что в них столько же глины, они столько же весят и занимают столько же места. (Если ребенок не согласен, его просят выровнять различие, отщипнув глины от одного шарика и прилепив к другому). После этого один шарик раскатывают в лепешку и спрашивают ребенка, содержат ли шарик и лепешка одинаковое количество глины (сохранение массы), одинаково ли они весят (сохранение веса) и занимают ли они такое же пространство (сохранение объема). Дошкольники обычно отвечают отрицательно на все три вопроса, а младшеклассники — на один или два из них. Лишь в средних классах дети начинают стабильно осознавать, что если глиняный шарик превратить в лепешку, то масса, вес и объем глины не изменятся[33].
Пиаже объяснял этот феномен тем, что дети еще не освоили операциональную логику, и называл их мышление «дооперациональным», полагая, что оно пронизывает не только рассуждения о сохранении, но и все аспекты их психической жизни. Выводы маленьких детей о физической причинности и их оценки моральности поведения тоже расценивались Пиаже как дооперациональные. Сегодня психология отошла от такой классификации. Выводы Пиаже вызывают сомнения по целому ряду причин. Самый главный аргумент — это то, что логические способности развиваются с разной скоростью в разных областях. В частности, дети осваивают логику естественного языка (грамматику) и логику естественных чисел (счет) еще до школы, а логику дедуктивных рассуждений (доказательств) и логику пропорционального рассуждения (дроби) — лишь через десять лет школьного обучения, да и то не всегда[34].
Это верно и в отношении сохранения. О сохранении массы дети узна
Материя сохраняется во многих случаях, когда на вид она совершенно явно исчезает или появляется. Это и вода, испаряющаяся из открытой емкости, и пар, поднимающийся из кипящей кастрюли, и нагретая солнцем дверь, которая перестает умещаться в раму, и сгорающие дотла бревна. При этом многие свойства материи
Откровенно говоря, Пиаже интересовало не только сохранение, присущее материи, но сохранение, присущее количеству в целом, в том числе численное и пространственное. Перегруппировка игрушек не меняет их числа, равно как вес глиняного шарика не меняется, если его раздавить. Пиаже хотел узнать, когда и каким образом дети приходят к неизбежности такого вывода. Последователей Пиаже ошибки сохранения увлекали и по причине своей невероятной устойчивости[36].
Может быть, самый прямой способ скорректировать восприятие сохранения — это научить ребенка обращать внимание на несколько параметров преобразования материи, например на распределение воды в емкости, а не только высоту ее уровня. Однако такого рода уроки мало влияют на восприятие, особенно спустя недели и месяцы. В одном из исследований несколько сотен детей проходили один из четырех видов обучения о сохранении[37]. Одним прямо объясняли, что не так в их суждениях. Других подталкивали делать выводы еще до того, как они увидят преобразования. Третьим показывали, что преобразования легко можно обратить. Четвертым рассказывали о логических причинах, по которым при преобразованиях материи масса и объем сохраняются. После этого понимание вопросов сохранения проверяли трижды на протяжении пяти месяцев. Результаты не воодушевляли: ни один из подходов не улучшил результатов.