Читаем Семь шагов в электронику полностью

Выберем первый вариант (двухтактный усилитель), и получим в результате 62,5 Вт. Добавим теперь мощность, потребляемую цепями накала. Предположим для этого, что выходной каскад собран на лампах 6П14П, как это частенько бывает. Их номинальный ток накала — 0,75 А. Умножаем его на четыре (количество выходных ламп), и получаем общий ток потребления 3 ампера. Осталось умножить его на 6,3 В — и мы получим мощность накала (примерно 19 Вт). Итого 62,5 + 19 = 80 Вт, которую теперь можно смело округлить до 100 Вт — ведь мы не учли еще массу мелких потребителей энергии.

Дальнейшее совсем просто — типовое анодное напряжение для ламп 6П14П — 250 В. В результате этих простейших прикидочных расчетов мы уже можем внятно сформулировать технические требования к будущему блоку питания:

♦ мощность — до 100 Вт;

♦ напряжение накала — 6,3 В с током до 4 А (3 + непредвиденные расходы);

♦ анодное напряжение — 250 В с током до 0,3 А ((100 Вт — 6,3 В х 4 А)/250 В).

Какой трансформатор мотать

Первое, с чем необходимо определиться, — трансформатор блока питания. Мы потребовали, чтобы блок питания можно было бы размещать внутри шасси усилителя.

 Примечание.

Но помните, что шасси усилителя — это очень уязвимое место в плане помех.

Наш блок питания, ни в коем случае, не должен воздействовать на остальные элементы схемы усилителя, а возможностей у него, к великому сожалению, даже слишком много. И первая из них — магнитные поля.

Уместно в связи с этим вспомнить принцип работы электронной лампы. Мы ведь все его хорошо помним — электроны из нагретого катода под действием электрического поля летят к аноду. Но на электроны воздействует не только электрическое, но и магнитное поле! Если трансформатор блока питания, не дай Бог, окажется вблизи входной лампы (а это может быть, в том числе, и потому, что ни в какое другое место нам блок питания пристроить не удалось), то наводка на входную лампу нам гарантирована. Спасти от нее может, разве что, железный экран.

 Примечание.

Поэтому трансформатор нашего блока питания либо должен быть полностью экранирован, либо иметь минимальные наводки.

Все это однозначно предопределяет конструкцию трансформатора — он должен быть намотан на кольце, потому что кольцо имеет самые низкие поля рассеяния.

Теперь необходимо рассчитать параметры трансформатора. Ссылки на формулы и программу расчета у нас были на шаге 7.

Воспользовавшись ими (в предположении, что источник питания будет собран по полумостовой схеме), получим следующий результат:

♦ магнитопровод— М2000НМ К28х16х9, частота преобразования 80 кГц;

♦ первичная обмотка — 71 виток, диаметр провода 0,5 мм;

♦ анодная обмотка — 116 витков, диаметр провода 0,35 мм;

♦ накальная обмотка — 3 витка, диаметр провода 1,2 мм.

И вот тут настало время задуматься. Накальная обмотка имеет всего три витка. Однако, в этом есть доля лукавства — если мы «обратным счетом» вычислим напряжение на ней, оно будет равно не 6,3, а 6,6 В.

Конечно, можно сделать эту обмотку поменьше, чтобы он давала точно 6,3 В. Берем калькулятор, быстренько вычисляем 3х6,3/6,6 и обнаруживаем, что обмотка должна содержать 2,86 витка. А теперь попробуйте себе представить, как выглядит обмотка, содержащая 2,86 витка? Удалось? Мне — нет!

Покатился снежный ком!

Ну вот, приехали. Каким образом мы собираемся мотать обмотку с точностью до сотых долей витка? Видимо, у нас есть три возможности:

♦ поиграться с высоковольтной обмоткой. На «высокой» стороне обмотка содержит аж 71 виток, там плюс-минус пара витков ничего радикально не изменит, а на «низкой» стороне мы получим то, что нам необходимо;

♦ намотать заведомо большее число витков, а излишек напряжения каким-либо образом погасить;

♦ сделать стабилизированный блок питания.

Первый путь больше похож на самообман. Да, мы можем отрегулировать число витков первичной обмотки, но как убедиться в том, что низковольтная обмотка содержит ровно три витка? Ведь достаточно при монтаже трансформатора просто посильнее прижать к нему выводы обмотки (добавив тем самым сотые доли витка) — и, пожалуйста, — проблема вновь всплыла!

Второй путь не совсем понятен. Мы можем погасить излишек напряжения, например, с помощью резистора. Но его нужно будет каждый раз пересчитывать под конкретные параметры того или иного усилителя. Даже простая замена лампы потребует такого пересчета.

Можно вместо резистора поставить какой-либо стабилизатор напряжения, но стабилизаторы напряжения не работают от переменного тока. Значит, необходим мощный выпрямитель напряжения накала, фильтр и прочие удовольствия. Нет, этот путь отпадает.

Стабилизированный источник питания — вот что нам требуется!

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки