Читаем Солнечные элементы полностью

Таким образом, как показывают данные, приведенные на рис. 4.12, только за счет повышения плотности потока солнечного излучения в 1000 раз КПД солнечного элемента из оптимального полупроводникового материала с шириной запрещенной зоны около 1,4 эВ возрастает до 35 % (см. рис. 4.12, кривая 7).

Результаты этих расчетов вдохновили многих исследователей на создание наземных фотогенераторов с солнечными элементами, работающими при весьма высоких концентрациях потока, достигающих уже сейчас уровня 400—500-кратных (с перспективой дальнейшего увеличения до 2000—2200-кратных по сравнению с обычным солнечным).

Если это направление повышения КПД солнечных элементов требует решения инженерных и конструкторских задач, связанных с отводом большого количества избыточной теплоты для сохранения температуры элементов на достаточно низком уровне, а также с созданием долговечных концентраторов солнечной энергии со светостойкими покрытиями, то два других перспективных способа резкого увеличения КПД преобразования солнечного излучения с помощью солнечных элементов находятся еще на стадии физических исследований в условиях лаборатории. Внешне эти два пути прямо противоположны.

Первый из них требует резкого сужения широкополосного солнечного спектра и затем превращения этого спектрально преобразованного потока излучения в электрическую энергию с помощью солнечного элемента с p-n-переходом в гомогенном материале, ширина запрещенной зоны которого точно подходит по энергетическому зазору к спектру направленного на него потока излучения. При сужении спектра КПД солнечного элемента, как известно, сильно возрастает, поскольку исчезают потери на нефотоактивное поглощение в длинноволновой части спектра и на тепловое рассеяние избыточной энергии коротковолновых фотонов.

Второй путь связан с созданием каскадной системы из нескольких солнечных элементов, прозрачных в длинноволновой области спектра за краем основной полосы поглощения, причем каждый из них будет эффективно преобразовывать соответствующую часть падающего излучения, в результате чего перекрывается весь спектральный интервал солнечного излучения и тем самым как бы резко расширяется спектральная чувствительность солнечного элемента.

Сузить широкополосное солнечное излучение можно различными путями, например направив концентрированный солнечный поток на теплоприемник, выполненный в виде модели черного тела с селективным термостойким излучателем, покрытым окисью эрбия, преимущественно излучающим в области спектра от 1 до 2 мкм. Солнечные элементы из германия или из кремния будут преобразовывать такой спектрально суженный (практически без потерь) поток солнечного излучения с КПД выше 25 %. Для солнечных элементов с большей шириной запрещенной зоны, например, из арсенида галлия с гомо- или гетеропереходом, следовало бы разработать селективный тепловой излучатель более коротковолнового участка спектра, что позволило бы получать в эксперименте еще большие значения кпд.

Для сужения солнечного спектра могут быть использованы полупроводниковые светодиоды на основе гетероструктур в арсениде галлия, преобразующие с почти 100 %-ным квантовым выходом коротковолновое излучение в длинноволновое, отвечающее по энергии ширине запрещенной зоны гомогенного арсенида галлия. Академиком Ж. И. Алферовым и его сотрудниками было предложено совместить в одном монолитном многослойном солнечном элементе такую переизлу-чающую структуру с преобразователем оптического излучения в электроэнергию на основе гетероструктуры твердый раствор алюминия в арсениде галлия — арсенид галлия.

Энергетические зонные диаграммы различных солнечных элементов на основе арсенида галлия представлены на рис. 4.13.

В случае переизлучающей структуры между двумя областями окна-фильтра область, обращенная к свету (область 2), имеет состав Al0,8Ga0,2As, а переизлучающая структура (область 4) — состав Al0,1Ga0,9As с постепенным увеличением (область 3) содержания алюминия (до 0,3) по мере приближения к р — n-переходу в арсениде галлия (область 7). В такой структуре спектр фоточувствительности определяется тонкой (толщина менее 1 мкм) верхней областью 2 широкозонного окна-фильтра, а сопротивление растекания снижается благодаря сравнительно толстой (толщина 20–30 мкм) внутренней области 3 окна-фильтра, прозрачной для длинноволнового люминесцентного излучения, испускаемого переизлучающей структурой 4 к р-n-переходу в арсениде галлия (область 7) после поглощения солнечного излучения.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука