Читаем "Теорія та методика навчання математики, фізики, інформатики. Том-1" полностью

В групу робіт з посібниками включаємо такі види робіт: програмовані завдання, роботи на знаходження помилок, спостереження і експеримент, робота з літературою, коментування тексту, роботи по переносу, складання задач. Опишемо коротко деякі з них:

а) Роботи на знаходження помилок. На практичних заняттях з методики викладання математики студенти перевіряють творчі методичні роботи один в одного або перевіряють зошити учнів 2-3 базових шкіл.

б) Роботи по переносу. Мається на увазі перенос теоретичних знань в ситуацію розв’язування задачі. Студентам пропонується задача для них ще незнайомого типу з відповідної теми курсу. Деколи аналіз умови цієї задачі виконується колективно, а пошук розв’язку студенти повинні здійснити за допомогою посібника (конспекту лекцій, підручника). Наступний вид переносу – це скласти математичну модель задачі практичного змісту (прикладної задачі) і знайти спосіб її розв’язування.

в) Роботи на складання задач. Студентам дається завдання скласти опорний план-конспект з відповідної теми, маючи при цьому розширений конспект лекції з цієї теми або навчальний посібник Можливий ще такий варіант вказаного виду роботи: після актуалізації знань по темі заняття студентам дається завдання скласти по цій темі в загальному вигляді і конкретного змісту задачі, користуючись при цьому знову ж таки конспектом лекції або іншим посібником. Найбільш вдалі з них розв’язуються тут же на занятті.

3. Роботи практичні. Самостійність студентів при виконанні цієї групи робіт ще більше зростає через те, що студенти не лише виконують роботи, але й опрацьовують інструкції до цих робіт. Викладач приймає у студентів допуск до виконання практичної роботи вислуховує їх по темі роботи, визначає їх готовність виконувати її тощо.

Наявність інструкцій, з яких студенти дізнаються, що і як вони будуть виконувати на занятті, є, таким чином, особливістю цього типу робіт.

Відмітимо інші їх особливості. Академічна група ділиться на підгрупи, а це значно полегшує викладачу керування діяльністю студентів. Виконання практичних робіт на занятті здійснюється індивідуально або бригадами по два-три студенти. Оформлення робіт закінчується, як правило, в післяаудиторний час. Кожну роботу студент обов’язково захищає в бесіді з викладачем, після чого йому виставляється оцінка.

В цю групу робіт ми включаємо лабораторно-прикладні (з обчислювальної математики та інформатики), лабораторно-теоретичні (з усіх інших розділів математики), графічні (виконання креслень деталей, виконання малюнків, котрі є розв’язками конструктивних задач, зображення геометричних фігур в паралельній проекції, знаходження інциденцій на проекційних рисунках і т.д.), виготовлення моделей та іншої наочності.

4. Роботи повністю самостійні. Студенти виконують ці роботи без будь-якої допомоги викладача або з мінімальною його допомогою. Для цього студенти повинні вільно володіти теоретичним матеріалом і достатньо сформованими вміннями розумових дій. Крім відтворюючих (пригадування, повторення, оглядові роботи) і перевірочних (письмове, програмоване опитування, контрольні роботи) сюди ми відносимо всі види раніше розглянутих робіт, які виконують студенти повністю самостійно (коментування, узагальнення та ін.).

У навчальному процесі вузу теоретичний матеріал, якщо дотримуватися ідеальної схеми, повинен опрацьовуватись студентами принаймні тричі: перший раз на лекції (напівформальне засвоєння знань), другий раз – при підготовці до практичного заняття чи на самому занятті або при підготовці до колоквіуму (неформальне засвоєння знань) і, нарешті, готуючись до екзамену (глибший рівень засвоєння знань).

В дійсності способи дій при розв’язуванні задач повторюються студентами, в кращому випадку, два рази – на практичному занятті і при підготовці до заліку. Тому потрібна система навчальної діяльності викладача на практичних заняттях, в якій би враховувався принцип триразового повторення знань і способів дій по кожній темі навчальної дисципліни. Ця система повинна містити в собі: 1) набори відповідних завдань по темі; 2) цілеспрямовані дії викладача на занятті; 3) систему відповідних самостійних робіт на занятті із переходом їх у позааудиторні самостійні роботи.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное