Читаем "Теорія та методика навчання математики, фізики, інформатики. Том-1" полностью

Визначити найбільші розміри поперечного перерізу бруса найбільшої міцності, який можна випиляти з колоди заданого діаметра

Аналізуючи задачу, учні приходять до висновку, що невідомі розміри можна визначити, коли будуть відомі залежності між сторонами прямокутника, його діагоналями і проекціями сторін на діагональ. Далі, розглядаючи і вивчаючи теорему Піфагора, можна використати багатий історичний матеріал, цікаві задачі, які дають можливість практично 100% засвоєння цієї теореми учнями. Так, наприклад, при вивченні цієї теми можна використати урок – бенефіс на тему “Теорема Піфагора” [2].

Досвід переконує, що озброєння учнів міцними знаннями з усіх предметів, в тому числі і з математики, в сучасних умовах неможливе без використання у навчально-виховному процесі позакласної роботи. Практика показує, що для формування відповідного ставлення до навчання потрібні не випадкові позакласні заходи, а продумана система цієї роботи. Cаме при проведенні занять із позакласної роботи з математики відкривається можливість більш широкого, ніж в урочний час, використання задач практичного змісту, проведення математичних обчислень та обчислювальних експериментів практичного характеру. Тут є можливість використання завдань творчого характеру, при розв’язуванні яких учні не тільки закріплюють набуті математичні знання, але й здобувають навички практичного застосування математичних методів до розв’язування прикладних задач – задач практичного змісту.

Література:

Пойа Д. Как решать задачу: Пер. с англ. – М.: Учпедгиз, 1959. – 208 с.

Мошковська Г.К. Головна теорема геометрії // Нова педагогічна думка. – 1999. – №4. – С. 121–125.

Розв’язування задач з параметрами

з Використанням програми gran1

Т.Г. Крамаренко

м. Кривий Ріг, Жовтневий ліцей

Математика є унікальним засобом формування не тільки освітнього, а й розвиваючого та інтелектуального потенціалу особистості. Використання комп’ютера, зокрема програми GRAN1, на уроках алгебри допомагає у вирішенні дидактичних завдань та активізує дію мотиваційних чинників у створенні позитивного ставлення до навчання [1].

Розглянемо приклади застосування GRAN1 при вивченні теми “Розв’язування задач з параметрами”.

Параметр має двоїсту природу – з одного боку це фіксоване, але невідоме число, а з другого боку – змінна, оскільки розглядаємо задачу для всіх можливих значень параметра. Це і обумовлює два основні методи розв’язання – аналітичний та графічний, з побудовою графічного образу на координатній площині ( x; y) чи на площині ( x; а). Графічний метод перетворює процес розв’язування з формально-арифметичного в наочно-геометричний.

Щоб знайти при яких значеннях арівняння х 2–2 ах+а+1=0 і х 2 +ах–а–1=0 мають хоча б один спільний корінь, користуються, як правило, аналітичним методом. З використанням GRAN1 задачу нескладно розв’язати графічно. Для цього будуємо в одній системі координат графічні образи рівнянь, відкладаючи по осі абсцис значення змінної, по осі ординат – значення параметра. Скориставшись послугою “Координати точки”, знаходимо ординати точок перетину: –1; 2;  –0,67. При таких значеннях параметра рівняння мають спільний корінь.

Передбачимо, використовуючи GRAN1, кількість розгалужень в процесі розв’язання рівняння х 4–2 ах 2х+а 2а=0 та число розв’язків для кожного значення параметра а. Аналізуючи графічний образ можна встановити, що для а<–0,25 коренів нема; для –0,25< а<0,75 коренів два, для а>0,75 коренів чотири, для а=–0,25 – один, для а=0,75 – три. Самі ж корені можна знайти лише наближено. Аналітичним методом рівняння розв’язують через параметр.

Для розв’язування нерівності х 2( х 2–2 а)+4 а< х 2(4– а) традиційно використовують аналітичний метод. Спробуємо здійснити передбачення розв’язків з використанням GRAN1. Перетворюємо нерівність до виду G( x, y)>0, будуємо графічний образ рівняння G( x, y)=0 і використовуємо послугу “Розв’язати нерівність G( xy)>0”.

По осі абсцис відкладаємо значення параметра а, по осі ординат – змінної х. Щоб переконатися, яку саме криву побудовано, додатково будуємо в цій же системі координат графік функції . Криві співпадають (рис. 1). Проводимо прямі, перпендикулярні параметричній осі, записуємо розв’язки нерівності. Якщо а<0, x(–2; 2); 0≤ а<4, то х(–2; –√ а)U(√ а; 2); якщо а=4, то нема розв’язків; якщо а>4, то х(–√ а; –2)U(2; √ а).

Ще одна нерівність. При яких значеннях параметра анерівність a·4 x–4·2 x+3 a+1≥0 виконується для всіх х? Будуємо з використанням GRAN1 геометричне місце точок (рис. 2), що задовольняють нерівність. По осі ординат відкладаємо параметр а, знаходимо максимум а=1. При a≥1 нерівність виконується для всіх х.

Щоб розв’язати без використання GRAN1, перетворюють нерівність. Задача знову звелась до знаходження найбільшого значення функції. Для отримання розв’язків використовують похідну.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное