Читаем "Теорія та методика навчання математики, фізики, інформатики. Том-1" полностью

Если в произвольном треугольнике разделить каждую сторону на три равные части, то точки пересечения лучей, соединяющих третьи части сторон с противолежащими вершинами, окажутся, в свою очередь, вершинами треугольника подобного данному, зеркально-симметричного данному, со сторонами и периметром равными1/5 данного.

CЕ = 1/3 АС; CЕ = ЕК = АК;

А 1В 1 = 1/5 АВ CD = 1/3 BС; CD = DN = NB;

В 1С 1 = 1/5 ВС BM = 1/3 AB; BM = ML = LA.

А 1С 1 = 1/5 АС

Таким образом, в любом треугольнике, кроме медиан есть еще и терцианы.

НЕКОТОРЫЕ ОСОБЕННОСТИ И ПРОБЛЕМЫ

АКТИВИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

АБИТУРИЕНТОВ ПРИ ИЗУЧЕНИИ КУРСА

«ТРИГОНОМЕТРИЯ»

С.Н. Латынин 1, И.В. Латынина 2

1г. Донецк, Донецкий экономико-гуманитарный институт

2г. Донецк, Донецкий политехнический техникум

Содержание и методика обучения математике претерпевают закономерный процесс периодического обновления и непрерывного совершенствования. Роль фундаментальных знаний в педагогическом плане была всегда велика, но в полной мере начинает осознаваться в наше время, когда особенно быстро растет объем новых знаний о природе. Только фундаментальное образование способно выработать современное научное мышление, позволяющее успешно решать любые научные и технические проблемы, выдвигаемые практикой. В современных условиях, и в исследовательской лаборатории, и на производстве, лучше ориентируется и оказывается более эффективным работник с высоким уровнем общей подготовки.

При составлении учебного пособия «Тригонометрические неравенства. Практическое руководство для школьников и абитуриентов» авторы исходили: во-первых, из того, что «Тригонометрические неравенства» – это один из разделов тригонометрии, который меньше всего раскрыт в обучающей литературе и, во-вторых, сокращение часов выделяемых на аудиторные занятия заставляет по-новому взглянуть на проблему организации самостоятельной работы учащихся. При написании учебного пособия авторы опирались на психологические и педагогические принципы познавательной деятельности в процессе обучения. Мы исходили из того, что «слияние проблемы содержания и методов обучения с проблемой передачи и формирования способа мышления есть насущная необходимость наших дней». Обучение не должно ограничиваться передачей учащимся определенной суммы знаний, оно должно включать и передачу самого способа мышления. Педагогические и дидактические принципы, принятые за основу, призваны обеспечить реализацию процесса познавательной деятельности при максимальной активности учащихся. Так как выработка оптимального соотношения чувствительного и рационального познания представляет собой сложную задачу, то информация, извлекаемая из данного учебного пособия, переплетается с указаниями методологического характера: как следует подходить к изучению материала того или иного раздела, чтобы добиться оптимальных результатов с минимальной затратой времени. Наша цель не в том, чтобы дать им энциклопедические знания, а в том, чтобы научить учащихся разбираться в огромном потоке информации, анализировать и преломлять ее для своих практических целей.

Теоретический материал учебного пособия изложен в первых двух разделах, он не содержит ничего лишнего и ориентирован исключительно на формирование навыков быстрого решения тригонометрических неравенств. Одна из целей книги – довести последовательность основных действий учащихся при решении неравенств до автоматизма. Работа с пособием предполагает последовательный разбор решений всех неравенств, от простейших до самых сложных. Примечания по тексту должны ориентировать школьников на повторение и восстановление в памяти разобранного ранее теоретического материала (или решенных задач), на контроль правильности их рассуждений. Мы не ставим своей задачей использование творческих способностей школьников, а требуем, чтобы у них были определенные математические навыки, знания и умение их применять.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное