Читаем Учебное пособие по курсу «Нейроинформатика» полностью

В случае n=10, k=1 (см. табл. 3 и 4, строка 1) при валентностях 3 и 5 тензорная сеть работала как единичный оператор — все входные вектора передавались на выход сети без изменений. Однако уже при валентности 7 число химер резко сократилось и сеть правильно декодировала более 60% сигналов. При этом были правильно декодированы все векторы, удаленные от ближайшего эталона на расстояние 2, а часть векторов, удаленных от ближайшего эталона на расстояние 1, остались химерами. В случае n=10, k=2 (см. табл. 3 и 4, строки 3, 4, 5) наблюдалось уменьшение числа химер с ростом валентности, однако часть химер, удаленных от ближайшего эталона на расстояние 2 сохранялась. Сеть правильно декодировала более 50% сигналов. Таким образом при малых размерностях и кодах, далеких от совершенных, тензорная сеть работает довольно плохо. Однако, уже при n=15, k=3 и валентности, большей 3 (см. табл. 3 и 4, строки 6, 7), сеть правильно декодировала все сигналы с тремя ошибками. В большинстве экспериментов число эталонов было больше числа нейронов.

Таблица 4. Результаты численного эксперимента

Число химер, удаленных от ближайшего эталона на:Число неверно распознанных векторов, удаленных от ближайшего эталона на:
1234512345
16402560008960000
238400003840000
3021050000210290600
4018050000180290600
508850200156290600
60011201344089600112013440896
70001344089600013440896

Подводя итог можно сказать, что качество работы сети возрастает с ростом размерности пространства и валентности и по эффективности устранения ошибок сеть приближается к коду, гарантированно исправляющему ошибки.

<p>Доказательство теоремы</p>

В данном разделе приведено доказательство теоремы о числе линейно независимых образов в пространстве k-х тензорных степеней эталонов.

При построении тензорных сетей используются тензоры валентности k следующего вида:

(13)

где aj — n-мерные вектора над полем действительных чисел.

Если все вектора ai=a, то будем говорить о k-й тензорной степени вектора a, и использовать обозначение a⊗k. Для дальнейшего важны следующие элементарные свойства тензоров вида (13).

1. Пусть и , тогда скалярное произведение этих векторов может быть вычислено по формуле

(14)

Доказательство этого свойства следует непосредственно из свойств тензоров общего вида.

2. Если в условиях свойства 1 вектора являются тензорными степенями, то скалярное произведение имеет вид:

(15)

Доказательство непосредственно вытекает из свойства 1.

3. Если вектора a и b ортогональны, то есть (a,b) = 0, то и их тензорные степени любой положительной валентности ортогональны.

Доказательство вытекает из свойства 2.

4. Если вектора a и b коллинеарны, то есть b = λa, то a⊗k=λka⊗k.

Следствие. Если множество векторов содержит хотя бы одну пару противоположно направленных векторов, то система векторов будет линейно зависимой при любой валентности k.

5. Применение к множеству векторов невырожденного линейного преобразования B в пространстве Rn эквивалентно применению к множеству векторов линейного невырожденного преобразования, индуцированного преобразованием B, в пространстве .

Сюръективным мультииндексом α(L) над конечным множеством L назовем k-мерный вектор, обладающий следующими свойствами:

1. для любого iL существует j∈{1, …, k} такое, что αj=i;

2. для любого j∈{1, …, k} существует iL такое, что αj=i.

Обозначим через d(α(L),i) число компонент сюръективного мультииндекса α(L) равных i, через |L| — число элементов множества L, а через Α(L) — множество всех сюръективных мультииндексов над множеством L.

Предложение 1. Если вектор a представлен в виде , где βi — произвольные действительные коэффициенты, то верно следующее равенство

(16)

Доказательство предложения получается возведением в тензорную степень k и раскрытием скобок с учетом линейности операции тензорного умножения.

В множестве , выберем множество X следующим образом: возьмем все (n-1)-мерные вектора с координатами ±1, а в качестве n-й координаты во всех векторах возьмем единицу.

Предложение 2. Множество x является максимальным множеством n-мерных векторов с координатами равными ±1 и не содержит пар противоположно направленных векторов.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное