Читаем Верховный алгоритм. Как машинное обучение изменит наш мир полностью

Одним из таких правил будет: если Сократ — человек, значит, он смертен. Это правило соответствует условиям задачи, но не очень полезно, потому что не специфично для Сократа. Однако теперь мы применим принцип Ньютона и обобщим правило до всех сущностей: если сущность — человек, значит, она смертна. Или, более сжато: все люди смертны. Конечно, было бы опрометчиво выводить это правило на примере одного только Сократа, однако нам известны аналогичные факты о других людях: 

Платон — человек. Платон смертен.

Аристотель — человек. Аристотель смертен.

И так далее.

Для каждой пары фактов мы формулируем правило, которое позволяет нам вывести второй факт из первого и обобщить его благодаря принципу Ньютона. Если одно и то же общее правило выводится снова и снова, можно с определенной уверенностью сказать, что оно верно.

Пока что мы еще не сделали ничего такого, чего бы не умел алгоритм «разделяй и властвуй». Однако предположим, что вместо информации, что Сократ, Платон и Аристотель — люди, мы знаем только, что они философы. Мы по-прежнему хотим сделать вывод, что они смертны, и до этого сделали вывод или нам сказали, что все люди смертны. Чего не хватает теперь? Другого правила: все философы — люди. Это тоже вполне обоснованное обобщение (как минимум пока мы не решим проблему искусственного интеллекта и роботы не начнут философствовать), и оно заполняет пробел в наших рассуждениях: 

Сократ — философ.

Все философы — люди.

Все люди смертны.

Следовательно, Сократ смертен.

Кроме того, мы можем выводить правила исключительно на основе других правил. Если мы знаем, что все философы — люди и все философы смертны, то можем индуцировать, что все люди смертны. (Мы не можем, однако, сделать вывод, что все смертные — люди, потому что нам известны другие смертные существа, например кошки и собаки. С другой стороны, ученые, люди искусства и так далее — тоже люди и тоже смертны, а это укрепляет правило.) В целом чем больше правил и фактов у нас есть изначально, тем больше возможностей индуцировать новые правила путем обратной дедукции. А чем больше правил мы индуцируем, тем больше можем индуцировать. Это положительная спираль создания знаний, которая ограничена только риском переобучения и вычислительной сложностью. Но от этих проблем исходные знания тоже помогают: если вместо одной большой дыры надо заполнить много маленьких, этапы индукции будут менее рискованными и, следовательно, менее подверженными переобучению. (Например, при том же количестве примеров выведение путем индукции правила, что все философы — люди, менее рискованно, чем вывод, что все люди смертны.)

Обратить операцию часто бывает сложно, потому у нее может быть несколько противоположностей: например, у положительного числа есть два квадратных корня — положительный и отрицательный (22 = (–2)2 = 4). Самый знаменитый пример — то, что интеграл производной функции воссоздает эту функцию лишь до постоянной. Производная функции говорит нам, насколько она идет вверх и вниз в данной точке. Сложение всех этих изменений возвращает нам эту функцию, за исключением того, что мы не знаем, где она началась. Мы можем «проматывать» интеграл функции вверх или вниз без изменения производной. Чтобы упростить проблему, функцию можно «сжать», предположив, что аддитивная постоянная равна нулю. У обратной дедукции схожая проблема, и одно из ее решений — принцип Ньютона. Например, из правил «Все греческие философы — люди» и «Все греческие философы смертны» можно сделать вывод «Все люди смертны» или просто «Все греки смертны». Однако зачем довольствоваться более скромным обобщением? Вместо этого лучше предположить, что все люди смертны, пока не появится исключение. (Которое, по мнению Рэя Курцвейла, скоро появится.)

Одна из важных областей применения обратной дедукции — прогнозирование наличия у новых лекарств вредных побочных эффектов. Неудачное тестирование на животных и клинические испытания — главная причина, по которой разработка новых лекарств занимает много лет и стоит миллиарды долларов. Путем обобщения молекулярных структур известных токсичных веществ можно будет создать правила, которые быстро «прополют» предположительно многообещающие соединения и значительно увеличат шанс успешного прохождения испытаний оставшимися. 

<p>Как научиться лечить рак</p>
Перейти на страницу:

Похожие книги