Читаем Верховный алгоритм. Как машинное обучение изменит наш мир полностью

Давайте рассмотрим «бабушкину клетку», излюбленный мысленный эксперимент когнитивных нейробиологов. «Бабушкина клетка» — это нейрон в вашем мозге, который возбуждается тогда и только тогда, когда вы видите свою бабушку. Есть ли такая клетка на самом деле — вопрос открытый, но давайте изобретем ее специально для машинного обучения. Перцептрон учится узнавать бабушку следующим образом. Входные сигналы для этой клетки — либо необработанные пиксели, либо различные жестко прошитые свойства изображения, например карие глаза: вход будет равен 1, если на изображении есть карие глаза, и 0 — если нет. Вначале вес всех соединений, ведущих от свойств к нейронам, маленький и произвольный, как у синапсов в мозге новорожденного. Затем мы показываем перцептрону ряд картинок: на одних есть ваша бабушка, а на других нет. Если перцептрон срабатывает при виде бабушки или не срабатывает, когда видит кого-то еще, значит, никакого обучения не нужно (не чини то, что работает). Но если перцептрон не срабатывает, когда смотрит на бабушку, это значит, что взвешенная сумма значений его входов должна быть выше и веса активных входов надо увеличить (например, если бабушка кареглазая, вес этой черты повысится). И наоборот, если перцептрон срабатывает, когда не надо, веса активных входов следует уменьшить. Ошибки — двигатель обучения. Со временем черты, которые указывают на бабушку, получат большой вес, а те, что не указывают, — маленький. Как только перцептрон начнет всегда срабатывать при виде вашей бабушки и ошибочные срабатывания исчезнут, обучение завершится.

Перцептрон вызвал восторг в научном сообществе. Он был простым, но при этом умел узнавать печатные буквы и звуки речи: для этого требовалось только обучение на примерах. Коллега Розенблатта по Корнелльскому университету доказал: если положительные и отрицательные примеры можно разделить гиперплоскостью, перцептрон эту плоскость найдет. Розенблатту и другим ученым казалось вполне достижимым истинное понимание принципов, по которым учится мозг, а с ним — мощный многоцелевой обучающийся алгоритм.

Но затем перцептрон уперся в стену. Инженеров знаний раздражали заявления Розенблатта: они завидовали вниманию и финансированию, которое привлекали нейронные сети в целом и перцептроны в частности. Одним из таких критиков был Марвин Минский, бывший одноклассник Розенблатта по Научной средней школе в Бронксе, руководивший к тому времени группой искусственного интеллекта в Массачусетском технологическом институте. (Любопытно, что его диссертация была посвящена нейронным сетям, но потом он в них разочаровался.) В 1969 году Минский и его коллега Сеймур Пейперт[60] опубликовали книгу Perceptrons: an Introduction to Computational Geometry[61], где подробно, один за другим описали простые вещи, которым одноименный алгоритм не в состоянии научиться. Самый простой и потому самый убийственный пример — это функция «исключающее ИЛИ» (сокращенно XOR), которая верна, если верен один, но не оба входа. Например, две самые лояльные группы покупателей продукции Nike — это, видимо, мальчики-подростки и женщины среднего возраста. Другими словами, вы, скорее всего, купите кроссовки Nike, если вы молоды XOR женщина. Молодость подходит, женский пол тоже, но не оба фактора сразу. Если вы не молоды и вы не женщина, для рекламы Nike вы тоже неперспективная цель. Проблема с XOR в том, что не существует прямой линии, способной отделить положительные примеры от отрицательных. На рисунке показаны два неподходящих кандидата:

Поскольку перцептроны могут находить только линейные границы, XOR для них недоступен, а если они неспособны даже на это, значит, перцептрон — не лучшая модель того, как учится мозг, и неподходящий кандидат в Верховные алгоритмы.

Перцептрон моделирует только обучение отдельного нейрона. Минский и Пейперт признавали, что слои взаимосвязанных нейронов должны быть способны на большее, но не понимали, как такие слои обучить. Другие ученые тоже этого не знали. Проблема в том, что не существует четкого способа изменить вес нейронов в «скрытых» слоях, чтобы уменьшить ошибки нейронов в выходном слое. Каждый скрытый нейрон влияет на выход множеством путей, и у каждой ошибки — тысячи отцов. Кого винить? И наоборот, кого благодарить за правильный выход? Задача присвоения коэффициентов доверия появляется каждый раз, когда мы пытаемся обучить сложную модель, и представляет собой одну из центральных проблем машинного обучения.

Книга Perceptrons была пронзительно ясной, безупречной с точки зрения математики и оказала катастрофическое воздействие на машинное обучение, которое в те годы ассоциировалось в основном с нейронными сетями. Большинство исследователей (не говоря уже о спонсорах) пришли к выводу, что единственный способ построить интеллектуальную систему — это явно ее запрограммировать, поэтому в науке на 15 лет воцарилась инженерия знаний, а машинное обучение, казалось, было обречено остаться на свалке истории. 

<p>Физик делает мозг из стекла</p>
Перейти на страницу:

Похожие книги