Читаем Верховный алгоритм. Как машинное обучение изменит наш мир полностью

Метод ближайшего соседа оставался самым широко используемым обучающимся алгоритмом аналогистов вплоть до середины 1990-х, когда его затмили более гламурные кузены из других «племен». Но тут, сметая все на своем пути, на смену ворвался новый алгоритм, основанный на принципах сходства. Можно сказать, что это был еще один «дивиденд от мира», плод окончания холодной войны. Метод опорных векторов был детищем советского специалиста по частотному подходу Владимира Вапника[94]. Вапник большую часть своей карьеры работал в московском Институте проблем управления, но в 1990 году Советский Союз рухнул, и ученый уехал в США, где устроился на работу в легендарную Bell Labs[95]. В России Вапник в основном довольствовался теоретической, бумажной работой, но атмосфера в Bell Labs была иной. Исследователи стремились к практическим результатам, и Вапник наконец решился превратить свои идеи в алгоритм. В течение нескольких лет он с коллегами по лаборатории разработал метод опорных векторов, и вскоре опорные векторы оказались повсюду и принялись ставить новые рекорды точности.

На первый взгляд метод опорных векторов во многом похож на взвешенный алгоритм k-ближайших соседей: граница между положительными и отрицательными классами определяется мерой схожести примеров и их весами. Тестовый пример принадлежит к положительному классу, если в среднем он выглядит более похожим на положительные примеры, чем на отрицательные. Среднее взвешивается, и метод опорных векторов помнит только ключевые примеры, необходимые для проведения границы. Если еще раз посмотреть на Позистан и Негативию без городов, не расположенных на границе, останется такая карта:

Примеры здесь называются опорными векторами, потому что это векторы, которые «поддерживают» границу: уберите один, и участок границы соскользнет в другое место. Также можно заметить, что граница представляет собой зубчатую линию с резкими углами, которые зависят от точного расположения примеров. У реальных понятий, как правило, границы более плавные, а это означает, что приближение, сделанное методом ближайшего соседа, вероятно, не идеально. Благодаря методу опорных векторов можно сделать границу гладкой, больше похожей на эту:

Чтобы обучить метод опорных векторов, нужно выбрать опорные векторы и их вес. Меру схожести, которая в мире опорных векторов называется ядром, обычно назначают априорно. Одним из важнейших открытий Вапника было то, что не все границы, отделяющие положительные тренировочные примеры от отрицательных, равноценны. Представьте, что Позистан воюет с Негативией и государства разделены нейтральной полосой с минными полями с обеих сторон. Ваша задача — исследовать эту ничейную землю, пройдя с одного ее конца к другому, и не взлететь на воздух. К счастью, у вас в руках карта c расположением мин. Вы, понятное дело, выберете не просто любую старую тропинку, а станете обходить мины как можно более широким кругом. Именно так поступает метод опорных векторов: мины для него — это примеры, а найденная тропа — выученная граница. Самое близкое место, где граница подходит к примеру, — ее зазор, и метод опорных векторов выбирает опорные векторы и веса так, чтобы зазор был максимальным. Например, сплошная прямая граница на этом рисунке лучше, чем пунктирная:

Пунктирная граница четко разделяет положительные и отрицательные примеры, но опасно близко подходит к минам A и B. Эти примеры — опорные векторы. Удалите один из них, и граница с максимальным зазором переместится в другое место. Конечно, граница может быть изогнутой, из-за чего зазор сложнее визуализировать, но можно представить себе, как по ничейной земле ползет змея и зазор — ее жировые отложения. Если без риска взорваться на кусочки может проползти очень толстая змея, значит, метод опорных векторов хорошо разделяет положительные и отрицательные примеры, и Вапник показал, что в этом случае можно быть уверенным, что метод не подвержен переобучению. Интуиция подсказывает, что у толстой змеи меньше способов проскользнуть мимо мин, чем у тощей, и точно так же, если зазор большой, у него меньше шансов переобучиться данным, нарисовав слишком замысловатую границу.

Перейти на страницу:

Похожие книги