Мы приблизились к возможному ответу на наш исходный вопрос о том, как грубая физическая материя может породить нечто представляющееся настолько эфемерным, абстрактным и бестелесным, как разум: он кажется нам таким бестелесным из-за своей субстрат-независимости, из-за того, что живет своей жизнью, которая не зависит от физических деталей его устройства и не отражает их. Говоря коротко, вычисление — это определенная фигура пространственно-временного упорядочения атомов, и важны здесь не сами атомы, а именно эта фигура! Материя не важна.
Другими словами, «хард» здесь материя, а фигура — это «софт». Субстрат-независимость вычисления означает, что AI возможен: разум не требует ни плоти, ни крови, ни атомов углерода.
Благодаря этой субстрат-независимости изобретательные инженеры непрерывно сменяют одну технологию внутри компьютера другой, радикально улучшенной, но не требовавшей замены «софта». Результат во всех отношениях нагляден в истории запоминающих устройств. Как показывает рис. 2.8, стоимость вычисления сокращается вдвое примерно каждые два года, и этот тренд сохраняется уже более века, снизив стоимость компьютера в миллион миллионов миллионов (в 1018) раз со времен младенчества моей бабушки. Если бы все сейчас стало в миллион миллионов миллионов раз дешевле, то сотой части цента хватило бы, чтобы скупить все товары и услуги, произведенные или оказанные на Земле в тот год. Такое сильное снижение цены отчасти объясняет, почему сейчас вычисления проникают у нас повсюду, переместившись из отдельно стоящих зданий, занятых вычисляющими устройствами, в наши дома, автомобили и карманы — и даже вдруг оказываясь в самых неожиданных местах, например в кроссовках.
Рис. 2.8
С 1900 года вычисления становились вдвое дешевле примерно каждые пару лет. График показывает, какую вычислительную мощность, измеряемую в количестве операций над числами с плавающей запятой в секунду (FLOPS), можно было купить на тысячу долларов{5}. Частные случаи вычислений, которые соответствуют одной операции над числами с плавающей запятой, соответствуют 105 элементарным логическим операциям вроде обращения бита (замены 0 на 1, и наоборот) или одного срабатывания гейта NAND.
Почему развитие наших технологий позволяет им удваивать производительность с такой регулярной периодичностью, обнаруживая то, что математики называют экспоненциальным ростом? Почему это сказывается не только на миниатюризации транзисторов (тренд, известный как закон Мура), но, и даже в большей степени, на развитии вычислений в целом (рис. 2.8), памяти (рис. 2.4), на море других технологий, от секвенирования генома до томографии головного мозга? Рэй Курцвейл называет это явление регулярного удвоения «законом ускоряющегося возврата».
В известных мне примерах регулярного удвоения в природных явлениях обнаруживается та же самая фундаментальная причина, и в том, что нечто подобное происходит в технике, нет ничего исключительного: и тут следующий шаг создается предыдущим. Например, вам самим приходилось переживать экспоненциальный рост сразу после того, как вас зачали: каждая из ваших клеточек, грубо говоря, ежедневно делится на две, из-за чего их общее количество возрастает день за днем в пропорции 1, 2, 4, 8, 16 и так далее. В соответствии с наиболее распространенной теорией нашего космического происхождения, известной как