Читаем Жизнь такая же круглая как и Земля (СИ) полностью

Мы можем проанализировать гармонические составляющие сигнала используя формулу 5.9. Для этого дифференцируем сигнал с производной кратностью в четыре. До тех пор пока не получим синусоидальный сигнал. Находим искомую гармонику, умножив на соответствующий коэффициент. Вычитаем из исходного сигнала полученный гармонический сигнал с данным найденным периодом. Дифференцируем опять полученный после вычитания сигнал до меньшего дифференциала, чем в первый раз. И получаем другую гармоническую составляющую. Так производим, пока не получим все гармонические сигнала. Для наглядности рассмотрим пример, в котором определяются 3 гармонические составляющие.

Пусть искомый сигнал подчиняется следующей функции:

(5.10)

График данной функции представлен на рисунке 5.4.

Рисунок 5.4. – График исходной функции.

Продифференцируем до 8 производной входной сигнал. Это можно сделать используя свойство производной, а именно производная равна делению приращения функции к приращению аргумента.

Рисунок 5.5. – Восьмая производная исходного сигнала.

Полученный сигнал имеет период 15, также как и минимальный период входного сигнала. Найдем амплитуду полученного сигнала:

Используя формулу 5.11, вытекающую из формулы 5.9:

(5.11)

Мы определили, что гармоника с минимальным периодом имеет следующий вид:

(5.12)

Отнимем от исходного сигнала найденную гармонику:

(5.13.)

Получим следующий график функции:

Рисунок 5.6. – График функции J1(t).

Продифференцируем до четвертой производной функцию J1(t). И получим следующий график:

Рисунок 5.7. – График функции четвертой производной от функции J1(t).

Как видим из графика функция синусоидальна. Имеет период 80 и амплитуду .

Используя формулу 5.14 получим амплитуду второй гармоники с периодом 80.

(5.14)

Мы определили, что вторая гармоника имеет вид:

(5.15)

От исходной функции отнимем первую и вторую гармонику:

(5.16)

График данной функции представлен на рисунке 5.8.

Рисунок 5.8. – График функции J2(t).

Как видно из рисунка 5.8, мы получили синусоиду, а именно третью гармонику исходного сигнала с периодом 130 и амплитудой . Третья гармоника имеет следующие параметры:

(5.17)

Итак запишем найденную функцию:

(5.18)

Построим график данной функции:

Рисунок 5.9. – График полученной функции.

Построим на одном графике исходную(пунктирную) и полученную функцию (сплошную):

Рисунок 5.10. – Полученная и исходная функция.

Как видно из рисунка 5.10, функции практически идентичны. Проверим, прогнозируется ли функция за пределами наблюдения. Для этого продлим время в исходной и полученных функциях, рисунок 5.11.

Рисунок 5.11. – Прогноз поведения исходной (пунктирной) и полученной функции (сплошной).

Как видно из рисунка 5.11, поведение функции прогнозируется.

Выводы к пятой главе: Получен математический метод прогнозирования процесса в дальнейшем, (за пределами наблюдения). Метод позволяет прогнозировать и те процессы, в которых гармонические составляющие имеют период в два раза и более большие периода наблюдения за процессом.

6. – ФУНКЦИЯ СОСТОЯНИЯ СЛУЧАЙНОГО ПРОЦЕССА И ПРОГНОЗ СЛУЧАЙНОГО СОБЫТИЯ

Существует поток случайного события, происшествие несчастных случаев в цехе Ц2 ММК им Ильича:

Воспользовавшись формулами 4.2-4.4. Пункта 4 данной диссертации для первых шести несчастных случаев. В результате получим амплитудно – периодическую функцию:

Рисунок 6. – Амплитудно периодическая характеристика случайного процесса.

Для гармоник от 100 до 296 найдем функцию состояния случайного процесса, по формуле 6.1, полученной по формуле 4.5.

(6.1)

Рисунок 6.1. – Функция состояния первых 6 событий и прогнозируемого 7 события.

Построим функцию состояния для 2-7 события с прогнозом на 8 событие, по периодам от 100 до 674:

Рисунок 6.2. – Функция состояния первых 2-7 событий и прогноз на 8 событие.

Построим функцию состояния первых 3-8 событий, с прогнозом на 9 событие:

Рисунок 6.3. - Функция состояния первых 3 - 8 событий и прогноз на 9 событие.

Построим функцию состояния первых 4-9 событий, с прогнозом на 10 событие:

Рисунок 6.4. - Функция состояния первых 4 - 9 событий и прогноз на 10 событие.

Построим функцию состояния первых 5-10 событий, с прогнозом на 11 событие:

Рисунок 6.5. - Функция состояния первых 5 - 10 событий и прогноз на 11 событие.

Построим функцию состояния первых 6-11 событий, с прогнозом на 12 событие:

Рисунок 6.6. - Функция состояния первых 6 - 11 событий и прогноз на 12 событие.

Как видно из рисунков 6.1 – 6.6, прогнозируемое событие происходит в точках качественного перехода функции состояния случайного события.

6.1. ТОЧКИ КАЧЕСТВЕННОГО ПЕРЕХОДА ФУНКЦИИ.

На рисунке 6.7, представлена синусоида с 4 точками качественного перехода:

Рисунок 6.7. – Точки качественного перехода.

На рисунке 6.7, первая точка соответствует переходу количества в качество, а именно, функция до 1 точки была отрицательная, а после положительная. Вторая точка соответствует переходу от возрастающей функции в убывающую. Третья точка соответствует переходу от положительного значения в отрицательное. Четвертая точка соответствует переходу от убывающей функции в возрастающую.

Перейти на страницу:

Все книги серии Пляс теория

Математическое обоснование первых трех заповедей блаженства Господа и Спасителя нашего Иисуса Христа (СИ) "Предупреждение: Не вычитано"
Математическое обоснование первых трех заповедей блаженства Господа и Спасителя нашего Иисуса Христа (СИ) "Предупреждение: Не вычитано"

Я пришел к блаженству применяя мою теорию. Затем, прочитав Новый Завет.  Я был поражен, что  моя теория более подробно раскрывает Новый Завет. Так например, в первой заповеди блаженства сказано - Блаженны нищие духом, ибо их есть Царство Небесное. Что означает нищие духом? Исходя из моей теории нищие духом, - это означает не заставлять себя думать над проблемами, страхами, неприятностями. Ключевое в данной формулировке – не заставлять. Необходимо четко отличать в сознании когда вы заставляете себя думать над проблемой, и когда мысль крутится сама собой в голове. Та часть мыслей, которая сама собой крутится в Вашей голове является вне вашей воле. Вы не сможете их устранить. Но они не помешают Вам прийти к блаженству. Нужно только лишь не заставлять себя думать над проблемой. Это сделать на столько же легко настолько же и сложно. Разум привык все обдумывать. При этом не заставлять себя думать не подразумевает сильные усилия. Вы не напрягаетесь, а просто не заставляете себя думать.

Asus

Математика / Православие / Христианство / Прочая старинная литература / Книги по психологии

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное