Читаем 2a. Пространство. Время. Движение полностью

Что случится потом, после многих циклов? Это зависит от ха­рактера и величины трения. Предположим, что мы придумали такое устройство, что при изменении амплитуды сила трения оказывается пропорциональной другим силам — инерции и натяжению. Иначе говоря, при малых колебаниях трение сла­бее, чем при колебаниях с большой амплитудой. Обычно сила трения таким свойством не обладает, так что можно предполо­жить, что в нашем случае действуют силы трения особого рода — силы, пропорциональные скорости; тогда для больших колеба­ний эти силы будут больше, а для малых — меньше. Если у нас именно такой вид трения, то в конце каждого цикла система будет находиться в тех же условиях, что и в начале цикла, только всего будет меньше. Все силы будут меньше в тех же пропорциях: сила пружинки немного ослабнет, инерциальные эффекты будут меньше. Ведь теперь и ускорения грузика будут меньше, и сила трения ослабеет (об этом мы позаботились, соз­давая наше устройство). Если бы мы имели дело с такими си­лами трения, то увидели бы, что каждое колебание в точности повторяет первое, только амплитуда его стала меньше. Если после первого цикла амплитуда составляла, например, 90% пер­воначальной, то после второго цикла она будет равна 90% от 90% и т. д., т. е. размах колебаний после каждого цикла умень­шается в одинаковое число раз. Кривая, ведущая себя таким образом,— это экспоненциальная функция. Она изменяется в одинаковое число раз на любых интервалах одинаковой длины. Иначе говоря, если отношение амплитуды одного цикла к амплитуде предыдущего равно а, то такое же отношение для вто­рого цикла равно а2, затем а3 и т. д. Таким образом, амплитуда колебаний после n циклов равна

А=А0аn. (25.10)

Но, конечно, n~t, поэтому общее решение будет произведением какой-нибудь периодической функции sinwt или соswt на ам­плитуду, которая ведет себя примерно как bt. Если b положи­тельно и меньше единицы, то его можно записать в виде е-c.

Вот почему решение задачи о колебаниях при учете трения бу­дет выглядеть примерно как

ехр(-ct)coswt. Это очень просто.

Что случится, если трение не будет таким искусственным; например обычное трение о стол, когда сила трения по­стоянна по величине, не зависит от размаха колебаний и меняет свое направление каждые полпериода? Тогда уравнения движе­ния станут нелинейными; решить их трудно, поэтому придется прибегнуть к описанному в гл. 2 численному решению или рас­сматривать по отдельности каждую половину периода. Самым мощным, конечно, является численный метод; с его помощью можно решить любое уравнение. Математический анализ ис­пользуется лишь для решения простых задач.

Надо сказать, что математический анализ вообще не такое уж могучее средство исследования; с его помощью можно ре­шить лишь простейшие возможные уравнения. Как только урав­нение чуть усложняется, его уже нельзя решить аналитически. Численный же метод, с которым мы познакомились в начале курса, позволяет решить любое уравнение, представляющее физический интерес.

Пойдем дальше. Что можно сказать о резонансной кривой? Как объяснить резонанс? Представим сначала, что трения нет и мы имеем дело с чем-то, что может колебаться само по себе. Если подталкивать маятник каждый раз, когда он пройдет мимо нас, то очень скоро маятник начнет раскачиваться, как сумас­шедший. А что случится, если мы закроем глаза и, не следя за маятником, начнем толкать его с произвольной частотой, с ка­кой захотим? Иногда наши толчки, попадая не в ритм, будут замедлять маятник. Но когда нам посчастливится найти вер­ный темп, каждый толчок будет достигать маятника в нужный момент и он будет подниматься все выше, выше и выше. Таким образом, если не будет трения, то для зависимости амплитуды от частоты внешней силы мы получим кривую, которая выгля­дит, как сплошная линия на фиг. 25.5.

Фиг. 25.5. Резонансная кривая, отражающая разнообразные виды трения.

Качественно мы по­няли резонансную кривую; чтобы найти ее точные очертания, пожалуй, придется прибегнуть к помощи математики. Кривая стремится к бесконечности, если w®w0, где w0— собственная частота осциллятора.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука