Читаем До предела чисел. Эйлер. Математический анализ полностью

Уже в возрасте 20 лет Эйлер стал членом Петербургской академии наук. Так начался период его математического творчества, которому нет аналогов в истории данной науки. В это время ученый открыл гамма-функцию (Г), дал определение постоянной е и сделал другие важные открытия в анализе и теории чисел, а также нашел решения двух задач, имевшие значительные последствия: Базельской задачи и задачи о мостах Кенигсберга.

Эйлер ехал в Россию без особого энтузиазма: помимо сурового климата, его ждала страна, где пользовались другим алфавитом. Однако это было самой меньшей из трудностей, поскольку Эйлеру легко давались иностранные языки: он хорошо знал латынь, греческий, французский и немецкий и добавил к этому списку еще и русский. Этим Эйлер отличался (в лучшую сторону) от других иностранных членов Академии. Здесь впервые появился заморский ученый, с которым можно было поговорить и чья речь была понятна, которому можно было писать, который потрудился научиться выражать свои мысли на местном языке. К тому же он обладал блестящей эрудицией и огромной любознательностью по отношению ко всему, что его окружало. Получив звание члена Академии картографии — один из многочисленных его титулов, — Эйлер восхищался российскими успехами и делал весьма лестные сравнения с западной картографией, с которой был знаком до этого.

По приезду в Санкт-Петербург он очутился в компании таких талантливых ученых, как Кристиан Гольдбах и Даниил Бернулли, а также других, родом из Германии или говоривших на немецком языке. Изначально Эйлер должен был обучать применению математики и механики в физиологии, но очень скоро молодой преподаватель отделения медицины стал профессором математики (в 1733 году), поработав между делом также и профессором физики (в 1731 году). Этот важнейший для него переход от физиологии к физике произошел благодаря настойчивым обращениям в Академию его коллег Якоба Германа (1678-1733) и Даниила Бернулли.

Работа в Российской академии оказалась для Эйлера чрезвычайно благоприятным периодом: он быстро продвигался по служебной лестнице и завел крепкую дружбу с Даниилом Бернулли и секретарем Академии Кристианом Гольдбахом. Он много писал, постоянно узнавал что-то новое и начинал формировать научный авторитет во всем мире. В 1733 году, когда статус и финансовое положение Эйлера уже позволяли содержать собственный дом и семью, он женился на Катерине Гзель, дочери художника Академии. У них было 13 детей, из которых выжили только пятеро.

ПЕТЕРБУРГСКАЯ АКАДЕМИЯ

Петр I хотел подтолкнуть развитие своей империи с помощью образования и распространения знаний. В результате своих путешествий по Европе, где он подружился с Лейбницем, в 1724-1725 годах Петр решил открыть в столице страны Академию наук (Academia Scientiarum Imperialis Petropolitanae). За образец были взяты правила и структура Парижской академии, которая зависела от государственной поддержки и субсидий. Начальный период работы Академии наук был непростым: к нестабильной политической ситуации в стране — где правили дети, регенты и царицы — добавлялись интриги и подковерная борьба за власть. Все это подтолкнуло Эйлера, обеспокоенного тем, какой оборот принимали события, переехать из Санкт-Петербурга в Берлин, то есть из одной академии в другую.

В 1735 году у ученого возникла серьезная глазная инфекция. Есть мнение, что он заболел из-за стресса, вызванного срочной работой по определению широты Санкт-Петербурга. Так или иначе, Эйлер на некоторое время ослеп на правый глаз. Несмотря на то что зрение постепенно к нему вернулось, спустя три года ученый снова потерял зрение на правом глазу, уже окончательно. Однако, если верить словам, приписываемым

Эйлеру, его дух не был сломлен этим бесповоротным ухудшением зрения: "Так даже лучше, я не буду отвлекаться".

Он производил вычисления без видимых усилий, как другие люди дышат или как парят орлы.

Доминик Франсуа Жан Араго (1786-1853)

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное