Читаем До предела чисел. Эйлер. Математический анализ полностью

Было бы логично предположить, что оно, как и предыдущие, является простым. По стандартам того времени более рискованно, хотя и не намного, было выдвинуть гипотезу (как сделал Гольдбах) о том, что все эти числа простые, подтверждая тем самым мнение самого Ферма. Гольдбах сообщил Эйлеру об этой задаче в 1729 году, а в 1732-м тот уже нашел ее решение: F5 — не простое число, а составное:

F5 = 4 294 967 297 = 641 • 6700 417.

Первой реакцией на этот результат было изумление. Ведь чтобы провести факторизацию этого числа, деля его на 2,3,5,7, 11,13 и так далее, продолжая перебирать бесконечную последовательность простых чисел, требовались колоссальные усилия.

ПЬЕР ДЕ ФЕРМА

Ферма был юристом по профессии и занимался математикой исключительно как хобби, за что получил прозвище "король любителей". Он внес решающий вклад в создание аналитической геометрии, а также в развитие теории вероятностей и оптики, изучал отражение и преломление света и отнес эти явления к максимумам и минимумам, заложив таким образом основы дифференциального исчисления. Наибольшую известность Ферма принесли его исследования о теории чисел, в которых ярко проявились его удивительные способности и необычные методы работы. Обычно он не записывал свои рассуждения отдельно, а делал, пока хватало места, пометки на полях книг, которые читал. Всемирной известностью он обязан появлению теоремы, гласящей, что "для n > 2 не существует таких целых положительных чисел х, у, z, не равных нулю, для которых справедливо хnn=zn". Она известна как Великая теорема Ферма, и долгое время у нее не было доказательства. Ферма утверждал — хотя, вполне возможно, ошибочно, — что однажды во время чтения он нашел превосходное доказательство, но на полях книги не было достаточно места для его записи. Теорема была доказана в 1995 году Эндрю Уайлсом.

Если же рассмотреть приемы Эйлера подробней, можно понять его метод и, одновременно с этим, гениальность ученого. Постепенно, следуя по скользкому пути деления, Эйлер пришел к выводу — совсем не простому,— что любой делитель F5 должен иметь вид 64n + 1. Таким образом, ему больше не надо было проверять один за другим все простые делители, а только числа 65 (n = 1), 129 (n = 2), 193 (n = 3) и так далее, вычеркивая те, которые простыми не являлись. При n - 10 подсчеты дают 64 -10 + 1 = 641, что является точным делителем.

На сегодняшний день не найдено ни одного другого простого числа Ферма. Все новые, что нам известны,— это составные числа. Было доказано, что начиная с F5 до F32 — а это огромное количество — нет ни одного простого числа. Но это не означает, что они никогда не будут обнаружены. Вопрос об их существовании — всего лишь гипотеза, а в математике гипотезы считаются верными или ложными, только если находится их доказательство или опровержение.

КРЕЩЕНИЕ ЧИСЛА

Параллельно с работой над числами Ферма и все так же в рамках обширной переписки с Гольдбахом Эйлер дал имя математической константе, которая, как мы уже говорили в предыдущей главе, впоследствии стала основой его исследований по теории чисел: это постоянная е. Впервые она появилась под таким обозначением в одном из писем 1731 года. Вне всяких сомнений, это самая известная постоянная после л. Ее приблизительное значение следующее:

е=2,71828182845904523536028747135266249775724709369995...

Сегодня известно более триллиона знаков е после запятой. Хотя Эйлер дал постоянной имя и использовал ее в самых разных областях, он не был ее первооткрывателем в строгом смысле этого слова: е появилась гораздо раньше, но под другим именем и "в тайне", как мы увидим ниже.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное