Обсуждая решение Шварцшильда, мы отмечали, что это внешнее вакуумное решение, которое может быть в равной степени связано как с чёрной дырой, так и с обычной регулярной звездой. Тогда что получается, если в обоих случаях решение характеризуется одним и тем же параметром
Таким образом, эйнштейновское «погружение в галилеевское пространство» и интегрирование по удалённой окрестности элегантно решает проблему определения глобальной энергии (и других сохраняющихся величин) для таких объектов, как чёрные дыры,
Для определения глобальных сохраняющихся величин удалённое фоновое пространство–время не обязательно должно быть плоским, оно также определяется характером конкретных моделей и задач. Будучи искривлённым, оно может иметь симметрии, используя которые можно построить соответствующие сохраняющиеся величины.
В последнее время большое внимание уделяется так называемым
Рис. 11.2. Эмми Нётер
Рассказывая о законах сохранения, нельзя не упомянуть выдающегося немецкого математика Эмми Нётер (1882–1935).
С её именем связаны различные разделы математики, она является основателем нового направления — абстрактной алгебры. Но для физиков её имя прежде всего связано с законами сохранения, построение которых основано на универсальных принципах, сформулированных и опубликованных в 1918 году. Особо важны теоремы Нётер при анализе и развитии теорий, имеющих
Что касается ОТО, то искривлённое пространство-время, как правило, не имеет симметрий, Поэтому нельзя, пользуясь теоремами Нётер, представить глобальные сохраняющиеся величины в общем случае. Однако ОТО инвариантна относительно общего вида координатных преобразований, здесь использование её принципов вполне продуктивно. Результатом оказываются локальные законы сохранения — обобщённые уравнения непрерывности (см. Дополнение 2).
Энергия замкнутой вселенной Рождение из «ничего»
Поскольку существует такая сила как гравитация, Вселенная могла и создала себя из ничего.
Мы дали представление как посчитать энергию гравитационных волн и изолированных объектов, то есть наиболее востребованных в исследованиях физических систем. Но можно ли посчитать энергию всей Вселенной? Для открытых миров обычно даётся ответ, что её нельзя определить корректно, либо, что она бесконечна. А вот для замкнутых миров есть вполне определённый ответ. Давайте проведём расчёт в замкнутом мире с помощью квазилокальной техники. Окружим себя сферой какого- либо радиуса, зададим граничные условия, которые будут регулярными (конечными), и, проинтегрировав соответствующее выражение по сфере, определим полную энергию материи и гравитационного поля внутри. Увеличим радиус и снова определим энергию уже внутри большего объёма, и т. д. Чтобы определить энергию