Читаем Хаос и структура полностью

Когда функция дифференцируется, получаемая при этом производная имеет, как мы видели, вполне определенное значение. Когда же мы производим действие интегрирования, идя от производной к первообразной функции, мы отнюдь не получаем окончательно определенной величины. Пусть, напр., дан угловой коэффициент касательной к какой–нибудь кривой и требуется найти уравнение самой кривой, т. е. пусть дана некая производная и требуется найти интеграл. Полученное в результате этого интегрирования уравнение кривой останется тем же самым, на каком бы расстоянии от центра координат мы ее ни проводили. Полученный интеграл говорит только о структуре кривой, но ровно ничего не говорит о ее абсолютном положении на плоскости системы координат. Поэтому, получая такой интеграл, именуют его неопределенным и прибавляют к нему т. н. постоянные интеграции, +с. Так, если упомянутый угловой коэффициент касательной есть 2х, то полученный интеграл имеет вид

у=х2 + с.

Образующаяся таким образом парабола совпадает своей осью с осью уу но в зависимости от значения с она будет пересекать ось у на том или ином расстоянии от центра. Разумеется, этих расстояний может быть бесконечное количество, и с может принимать любые значения, нисколько не влияя на структуру самой параболы.

Мы можем, однако, задаться целью получить не просто параболу, но и ее абсолютное положение в данной системе координат. Другими словами, мы можем задаться получить интеграл не вообще, но в определенных пределах. Наш аргумент принимает в таком случае не всякие значения, какие попало, но значения лишь в данных пределах—скажем, от х—а до х = b. Тогда соответственно получается и два неопределенных интеграла—для х = а и для х — b. Если мы теперь возьмем все то, что произошло между этими пределами, т. е. возьмем разницу между этими интегралами, то уже всякая неопределенность исчезнет, и наш интеграл будет ограничен строго определенными пределами. Это и есть т. н. определенный интеграл, и обозначается он так:

где а есть нижний предел, a b—верхний, и весь интеграл равен

I=f(b) — f(a).

Существует специальная теория определенных интегралов — специальный отдел интегрального исчисления. Тут трактуются вопросы о перестановке пределов, о делении промежутка интегрирования определенного интеграла, об определенном интеграле как функции своих пределов, о бесконечных пределах интеграла и о случаях прерывности подынтегральной функции, об изменении пределов в связи с заменой переменных и пр.

Подобно тому как в дифференциальном исчислении, получивши понятие производной, мы могли распространить это понятие до производных высшего порядка и до частных производных, — мы можем распространить и понятие интеграла. Если возможна производная от производной, полученной тоже как производная, и т. д., т. е. если возможны производные первого, второго, третьего и т. д. порядка, то, очевидно, возможны интегралы не только вообще, но также интегралы двойные и тройные. Равным образом при наличии нескольких независимых переменных возможно и дифференцирование, и интегрирование по какому–нибудь одному переменному (и тогда прочие переменные принимаются за постоянные), т. е. возможны частные производные и частные интегралы.

Кратное и частное интегрирование еще более углубляет и расширяет понятие интеграла.

Этим, однако, далеко не ограничивается область интегрального исчисления. Тут, можно сказать, только начало этой сложнейшей и глубочайшей науки. В поисках дальнейшего углубления и расширения операций под интегралами мы сталкиваемся с рядом дисциплин математического анализа, которые уже требуют для себя ясного и четкого места в общей диалектической системе.

Определенный интеграл есть интеграл, полученный из процесса изменения аргумента между данными пределами. Он несет на себе печать ограниченности области изменения аргумента. Можно еще далее усложнять получение интеграла из инобытийных судеб функции. Можно оперировать не только с производными, но и с теми или другими их модификациями в недрах инобытия. Можно идти к интегралу не просто от производной, но от производной в ее той или иной обусловленности и окружающим инобытием. Мы уже видели, что производная может переходить в свою производную, эта последняя—еще в дальнейшую, и т. д. Однако это есть не единственная инобытийная модификация производной. Можно и не переходить в чистое становление, а ограничиться чисто статическим инобытием. Так, если мы имеем х, то такое, напр., выражение, как , есть некая инобытийная модификация х, нисколько не становящаяся (в диалектическом смысле), а чисто статическая, потому что здесь дан ряд статических изменений, претерпеваемых х–ом. Точно так же и производную можно брать в ее инобытии не обязательно под формой чистого становления, а только лишь под формой статической измененности. И следовательно, может возникнуть задача получения интеграла именно при помощи такой статически–инобытийной обработанной производной.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное