Читаем Хаос и структура полностью

Очевидное тяготение А. Ф. Лосева к систематическому методу диалектики с опорой на упомянутую выше триаду позволяет с уверенностью определить его принадлежность к давней и необычайно стойкой традиции. Первое звено в этой цепи преемств составляют Платон и Аристотель, далее следуют неоплатоники во главе с Плотином и Проклом, затем — Николай Кузанский, потом — немецкие идеалисты в лице Шеллинга и Гегеля, наконец, новое и последнее звено было ковано на кузне отечественной мысли… Конечно, диалектическим методом владели многие из лосевских учителей и современников, вспомним В. Соловьева, Флоренского, Франка, Карсавина, Ильина, Муравьева. Лосевская мысль на этом фоне выделяется своим идейным монизмом, непоколебимой последовательностью в приложениях, принципиальным универсализмом, возведенным в принцип. Но не только. Здесь явлен итог, произнесено последнее слово. По словам автора Предисловия к «Диалектическим основам математики», в «случае Лосева» мы имеем дело с одним из «завершительных, резюмирующих умов», каковые «всегда появлялись в конце великих эпох для того, чтобы привести в систему вековую работу мысли и создать инвентарь умирающей культуры, чтобы передать его новой культуре, только еще строящейся» (6—7)[235].

Уточним теперь характер означенного образа платоновской цепи, точнее сказать, цепи платоновско–лосевской, если брать ее крайние звенья. Когда в 20–х годах систематизирующая мысль А. Ф. Лосева касалась проблем идеологических, социальных и религиозных, платонизм получал (когда—скрытое, когда — открытое) православное переосмысление и критику. «Последний русский диалектик» не порывал с двухтысячелетней традицией, но указывал ее недостатки и даже опасности (для непосредственного жизнепонимания) вроде, скажем, безличного онтологизма или пантеизма. Потому в сферах Имени и Мифа цепь нуждалась в принципиальном дополнении. Когда же в 30—40–х годах А. Ф. Лосев сосредоточился на философских вопросах математики и логики, полагаясь на относительную нейтральность этой области, прежняя неоплатоническая техника мысли уже не требовала качественных изменений. В сфере Числа цепь укреплялась не столько наращиванием, сколько отделкой в каждом из старых звеньев. По приложении старинного и даже древнего метода, в свете незыблемых «принципов» недостающее обобщение получали именно «факты» той обширной области точных наук, что традиционно считалась самой структурированной и развитой областью знания Нового времени.

Со страниц логико–математических исследований А. Ф. Лосева встают тени великих предшественников. Ажурная архитектоника лосевской «Логической теории числа», безусловно «одного из шедевров в философской литературе, занимавшейся числом» (12), соразмерна, сомасштабна, соприродна триадическим построениям «учения о бытии» из «Науки логики» Гегеля. Когда в «Диалектических основах математики» обнаруживаются веские суждения о «множестве всех чисел» и за таковым закрепляется термин «тотальность», в родственном ряду мы тут же находим «единство множества», Totalitat Шеллинга. И в той же книге прослеживая логическую «дедукцию геометрических фигур», нужно вспомнить более ранние построения «Античного космоса и современной науки», которые выводят нас прямо к Проклу с его комментариями «Элементов» Евклида. Чтение философского эссе «О форме бесконечности» (523—533) почти невольно заставляет вспоминать трактат «Об ученом неведении» Николая Кузанского — столь равномощны и равнозначимы эти два текста. Во всяком случае там, где затрагиваются одни и те же темы, разительно совпадают и результаты. Можно приводить еще много примеров подобных перекличек или, вернее, своеобразного диалога единомышленников. Даже в тех случаях, когда в своем диалектическом освещении нескончаемой математической «эмпирии» А. Ф. Лосев обращается к проблемам, еще незнакомым его предшественникам (несчетность в теории множеств, типы логик и геометрий, теория вероятностей и т. д.), им, кажется, руководит уверенность, что античные неоплатоники и немецкие диалектики—доведись им творить сегодня — воспарили бы в тех же логических «эмпиреях», где в реально–историческом одиночестве пребывал их российский vis a vi.

§ 2. «В ТРАНШЕЯХ ЛЕНИНСКОЙ ДИАЛЕКТИКИ»

Приступая к характеристике лосевской «философии числа», мы воспользуемся излюбленным приемом ее автора, методом «меональ–ного отграничения»: чтобы подвести к какому–нибудь «это», нужно всесторонне рассмотреть «то, что не есть это». Приверженность подобной интеллектуальной технике (ее применял Сократ и особенно любили неоплатоники) лишний раз показывает и доказывает действительную цельность творчества А. Ф. Лосева, который предстает диалектиком и по внутренней содержательности полученных результатов, и по внешней стилистике способа добывания таковых.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное