Читаем Хаос и структура полностью

Во всем этом много условного и, может быть, произвольного, но невозможно отрицать самого метода. Вместо абстрактных споров об «интуиционизме» и «формализме» тут яснейшим образом показано, где реально в математике интуиция и где рациональная форма. После этого упомянутые споры теряют всякое значение. После Лосева надо будет спорить иначе об этих вещах.

Интуиция, иррациональное, внутреннее, символ[7]и миф и, с другой стороны, рационализация, систематика, диалектика — вот между какими пределами движется философия Лосева. Я не раз была свидетельницей того, как эта интуиция с восторгом обреталась после длительных поисков и как она вновь отменялась после новых соображений. Так, философ один раз не в переносном, а в буквальном смысле затанцевал, когда мы после мучительных усилий напали на интуитивную картину взаимного движения вещественных и мнимых фокусов в кривых второго порядка при последовательном переходе их одна в другую. В другой раз Лосев забил себе в голову какую–то совершенно непонятную картину интегрирования между мнимыми пределами. И когда я скромно напомнила ему, что то же явление происходит и в криволинейных интегралах, то первой реакцией со стороны философа было классическое, но ничего не говорящее: «Тем хуже для криволинейных интегралов!» Однако недоразумение обнаружилось тотчас же, и философу пришлось кое–что изменить в «интуитивной» картине интегралов с комплексными переменными. Одну общую идею из этой области я сама подала ему еще в 1924 г., занимаясь в тот период аналитическими функциями. Но впоследствии я и сама была этому не рада, так как мне же и приходилось постоянно вносить расхолаживающую струю математических формул и теорем в эту неистовую философию, когда она становилась чересчур интуитивной или чересчур диалектичной.

Не нужно преувеличивать достижения этой многолетней работы Лосева, но не нужно ее и приуменьшать. Если скажут, что это не диалектика, или что это — метафизика, или что математика в этом не нуждается, или что это настолько мракобесный идеализм, что в нем и поучиться нечему, то все это, конечно, будет вздор. Что логический аппарат, пущенный тут автором в ход, не везде работает одинаково хорошо, что местами он, может быть, и совсем не годится, — это вполне возможно. Но важно, что начато большое дело и начато сильно, глубоко, уверенно, со вкусом. И никто не сможет никому воспрепятствовать начинать его еще по–новому, если этот первый почин не везде удовлетворителен.

29.1.1936 г.

<p>ВВЕДЕНИЕ (ОБЩЕЕ РАЗДЕЛЕНИЕ НАУК О ЧИСЛЕ)</p>§ 1. Первая противоположность: чистая математика и математическое естествознание.

Всякая вещь и всякий предмет мысли есть прежде всего нечто само по себе сущее, а затем он есть нечто существующее в мысли и в отношении с прочим бытием. Разумеется, полная действительность вещи не та, которая свойственна ей в ее абстрактно–изолированном состоянии, но та, которая принадлежит ей в ее всестороннем взаимоотношении со всем прочим. Однако в целях уразумения действительности мы разделяем ее на отдельные, более или менее абстрактные моменты и изучаем их изолированно, с тем чтобы потом, во–первых, объединить их в целое, а, во–вторых, не просто объединить, а воссоздать ту их общую жизненную связь, из которой они были извлечены первоначально.

Отсюда, как бы мы ни думали, что идее принадлежит лишь абстрактное существование, и как бы ни верили в то, что только материальное существование есть полная действительность той или другой идеи, мы все же с самого начала поставлены перед абсолютной необходимостью понять число в его идее, в его сущности, в его первоначальном смысловом содержании. Потом мы узнаем, как эта идея претворяется в действительность, что сначала надо знать, что же такое само–то число по себе, в чем его сущность и чем оно существенно отличается от всего прочего. Так возникает основная антитеза идеи, смысла, существа числа и его явления, его осуществления, числа как отвлеченного понятия и числа как предметного явления,, антитеза чистой математики и математического естествознания.

§ 2. Число как факт духовной культуры.
Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное