Читаем Красота в квадрате Как цифры отражают жизнь и жизнь отражает цифры полностью

Мы с вами уже знаем, что исчисление было рабочим инструментом Ньютона при открытии законов движения и всемирного тяготения. Математические нововведения позволили ему создать логически связную совокупность формул, описывающих зависимость между силами, действующими на объект, и его положением, скоростью и ускорением. В книге «Математические начала натуральной философии» Ньютон ввел новую концепцию — центростремительной силы, «под действием которой тела притягиваются, или продвигаются, или любым другим способом стремятся к определенной точке как к центру». Именно эта сила заставляет тела двигаться по кругу. Представьте себе теннисный мяч, привязанный к шнуру. Возьмите конец шнура в руку, поднимите над головой и начинайте вращать мяч так, чтобы он описывал в воздухе круги. Шнур тянет мяч к центру под действием центростремительной силы.

Центростремительная сила рассчитывается по формуле , где m — это масса тела, v — его скорость, r — радиус окружности (см. рисунок ниже). В каждый момент времени скорость мяча перпендикулярна шнуру, а центростремительная сила воздействует на шнур, притягивая его к центру. В «Началах» Ньютон уделял особое внимание центростремительным силам, воздействующим на планеты. Однако в XVIII веке эта сила вызывала большую обеспокоенность у транспортных инженеров.

Теннисный мяч движется по кругу под действием центростремительной силы

На первых железнодорожных линиях использовались только прямые и круговые участки пути. Такое сочетание создавало определенные проблемы, поскольку, когда поезд переходил с прямого на круговой участок, пассажиры испытывали неприятные ощущения — их начинало резко клонить в сторону. На поезд, движущийся по прямому участку с постоянной скоростью, не воздействуют никакие силы. Но, когда он переходит на круговой участок, он подвергается действию центростремительной силы. Так как она направлена внутрь, это и вызывало у пассажиров ощущение, будто их выталкивает наружу. (На самом деле пассажиров наружу ничто не выталкивает. Они переходят с прямой траектории на круговую, а поскольку система ориентиров в вагоне остается прежней, возникает иллюзия, будто какая-то сила выталкивает их наружу.)

«После полувека железнодорожных перевозок мы все еще используем на путях только прямые линии и круги, — писал американский инженер Эллис Холбрук в 1880 году. — Создается впечатление, что железнодорожники принимают такое варварское сочетание как должное, даже не задавая вопросов по поводу того, что здесь не так»[150]. Холбрук нашел следующее решение: делать между прямым и круговым участками переходную кривую, на которой поезд, двигающийся с постоянной скоростью, находится под воздействием центростремительной силы, линейно увеличивающейся на протяжении определенного периода. Поскольку центростремительная сила рассчитывается по формуле , где m и v — это константы, для того чтобы эта сила росла по линейному закону, переходная кривая должна иметь кривизну .

Прежде чем вернуться к кривой Холбрука, давайте более внимательно рассмотрим концепцию . Математики называют эту величину кривизной окружности с радиусом r, которая представляет собой меру отклонения окружности от прямой линии. На рисунке ниже изображены две окружности: маленькая окружность с радиусом r и большая с радиусом R; обе касаются пунктирной линии в одной точке. Кривизна малой окружности больше кривизны большой окружности, поскольку она сильнее отклоняется от прямой. Для того чтобы понять концепцию кривизны окружности, можно представить ее себе как меру «стянутости»: чем меньше радиус окружности, тем сильнее она стянута, а значит, ее кривизна больше.

Чем меньше радиус окружности, тем больше ее кривизна

Кривизна окружности с радиусом r равна в любой точке окружности. С другой стороны, кривизна кривой (такой как на нижнем рисунке) постоянно меняется по мере перемещения по ней. Для того чтобы вычислить кривизну кривой в любой ее точке, необходимо построить «наиболее подходящую» окружность, которая касается кривой и максимально приближена к ней в этой точке. Я нарисовал максимально приближенные окружности в точках А и В. Поскольку радиусы этих окружностей — а и b, кривизна кривой в точке А равна , в точке В — . Чтобы понять концепцию максимально приближенной окружности, можно представить себе, что кривая — это дорога. Вы едете по ней на автомобиле, и у вас заклинивает руль, скажем, в точке А. Если вы продолжите движение, его траектория и будет представлять собой максимально приближенную окружность в точке А.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное