Читаем Красота в квадрате Как цифры отражают жизнь и жизнь отражает цифры полностью

Физические законы Ньютона проросли из крохотного зерна бесконечно малых величин — величин, которые меньше всего остального, но больше нуля. Однако, несмотря на их плодотворную роль в создании новой науки, концепцию малых величин подвергали критике за внутреннюю противоречивость. «Что это за… крохотные приращения? — упорствовал философ и епископ Джордж Беркли. — Это и не конечные величины, и не бесконечно малые величины, и даже не ничто. Почему бы нам не называть их призраками величин, ушедших в мир иной?»[155]. Резкие замечания Беркли вызывали ропот среди ученых, вполне справедливо считавших исчисление величайшим математическим достижением эпохи Просвещения. Но все же священник был в какой-то мере прав. Хотя концепция бесконечно малых величин и обеспечивала получение правильных ответов, она не была до конца продуманной с научной точки зрения. Полемика, которую спровоцировал Беркли, поставила математиков на путь переоценки ценностей и самокритики. Какие концепции приемлемы, а какие — нет? В какой мере математика должна соответствовать здравому смыслу?

<p><strong>9. Назвние етой главы содержит три ошбки</strong></p>

Автор исследует математическое доказательство. Он высмеивает логическую дедукцию и встречается с анонимным членом тайной математической секты

Предлагаю вам решить головоломку. Однажды я поднялся на гору, переночевал на вершине, а на следующий день спустился вниз по тому же маршруту. Есть ли такая точка, в которой я был в одно и то же время в разные дни?

Подумайте об этом секунду.

Или две.

Ответ: да. Представьте себе, что оба путешествия происходят в один день. Если я одновременно поднимаюсь вверх и спускаюсь вниз, неизбежно наступит момент, когда я столкнусь с самим собой, и тогда значения времени и высоты совпадут.

Если вы примете аргумент о том, что в оба дня должен быть момент времени, когда я находился на одной высоте, я доволен: мое доказательство сделало свое дело. Математическое доказательство — это всего лишь инструмент, используемый одним человеком для того, чтобы убедить другого человека в истинности математического утверждения — а я вас убедил[156]

Однако более требовательного математика могут не удовлетворить мои доводы. Он может отбросить их по причине недостаточной строгости. Где доказательство того, что я столкнусь сам с собой? Давайте нарисуем график, отображающий мое восхождение от подножия горы на высоте А к ее вершине на высоте В, а также наложим на него маршрут моего спуска на следующий день, как показано на рисунке ниже. Теперь вопрос стоит по-другому: существует ли точка, в которой эти две линии пересекутся? Большинство читателей ответят: конечно же, есть! Но придирчивого математика мне так и не удалось убедить.

До конца XVIII века считалось, что если кривая поднимается от высоты А до высоты В, то она обязательно должна пройти каждую точку между А и В. На интуитивном уровне это утверждение кажется очевидным. В действительности оно согласуется с тем, как определялась тогда непрерывная кривая. Однако, когда математики внимательнее проанализировали свойства непрерывности, они пришли к выводу о необходимости более четких определений. Утверждения, которые воспринимались раньше как нечто само собой разумеющееся, были переведены в категорию теорем, требующих доказательства на основании еще большего количества исходных предположений. К их числу относилось и приведенное выше утверждение о том, что непрерывная кривая с минимальным значением А и максимальным значением В обязательно должна пройти все промежуточные значения; сейчас оно известно как теорема о промежуточном значении. Но ее доказательство настолько сложное, что его изучают только в университетах, хотя его будет достаточно, чтобы убедить нашего дотошного друга. В итоге он согласится с тем, что две кривые на представленном выше графике пересекаются в определенной точке, поскольку это утверждение вытекает из доказательства за несколько шагов.

Маршрут восхождения на вершину горы и спуска к ее подножию

Эксперименты — движущая сила науки. Доказательства — движущая сила математики. Существует множество способов проведения экспериментов, так же как и множество методов доказательств математических утверждений. В этой главе мы рассмотрим некоторые из них. Кроме того, проанализируем, как изменилось отношение к доказательствам, и пообщаемся с анонимным членом тайного общества, исповедующего математическую строгость. Но сначала давайте перекусим.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное