Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

Мы можем сделать то же самое. Вот числа от 1 до 20:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Больше половины этих чисел начинаются с цифры 1, поскольку от 11 до 19 все числа начинаются с единицы. Продолжаем считать. Где бы мы ни остановились, чисел с первой цифрой 1 будет не меньше, чем чисел с первой цифрой 2, поскольку для того, чтобы добраться до второго десятка, второй сотни или второй тысячи, необходимо назвать все числа первого десятка, первой сотни и первой тысячи. Точно так же чисел с первой цифрой 2 будет не меньше, чем чисел с первой цифрой 3 и т. д., вплоть до чисел с первой цифрой 9. Такое обоснование помогает понять закон Бенфорда на интуитивном уровне, и его вполне достаточно для суда как государственного органа, а вот для суда математики требуется более строгое доказательство.

Одно из самых поразительных свойств закона Бенфорда — что последовательность цифр не зависит от единицы измерения. Когда массив финансовых данных подчиняется закону Бенфорда в случае, если они выражены в фунтах, он будет подчиняться этому закону и после их конвертации в доллары. Если массив географических данных соответствует закону Бенфорда в километрах, он будет соответствовать ему и в случае их представления в милях. Это свойство, обозначаемое термином «масштабная инвариантность», верно всегда, поскольку числа, взятые из газет, банковских счетов и атласов мира показывают одно и то же распределение первых цифр независимо от используемых систем измерения и валюты.

Для перевода расстояния из миль в километры необходимо умножить его на 1,6; для конвертации денежной суммы из фунтов в доллары ее тоже следует умножить на фиксированное число, соответствующее текущему обменному курсу. Простейший способ понять масштабную инвариантность закона Бенфорда сводится к анализу поведения чисел в случае их умножения на два. Если число, начинающееся с цифры 1, умножить на 2, результат будет начинаться с цифры 2 или 3. (Например, 12 × 2 = 24; 166 × 2 = 332.) Если число, начинающееся с цифры 2, умножить на 2, первой цифрой произведения будет 4 или 5. (Например, 2,1 × 2 = 4,2; 25 × 2 = 50.) Первые две строки представленной ниже таблицы показывают, что происходит с первой цифрой числа в случае его умножения на два.

Первая цифра числаn/Первая цифра числа 2n/Процент чисел в распределении Бенфорда

1/2 или 3/30,1

2/4 или 5/17,6

3/6 или 7/12,5

4/8 или 9/9,7

5/1/7,9

6/1/6,7

7/1/5,8

8/1/5,1

9/1/4,6

Предположим, S — это массив данных, подчиняющихся закону Бенфорда. Давайте умножим на два каждое число, входящее в массив S, и обозначим новый массив чисел буквой T. Согласно таблице, числа из массива S, начинающиеся с цифры 5, составляют 7,9 процента от общего количества чисел в массиве; числа, первая цифра которых 6, — 6,7 процента, 7, 8 и 9–5,8; 5,1 и 4,6 процента соответственно. Следовательно, в массиве S доля чисел, начинающихся с 5, 6, 7, 8 или 9, равна 7,9 + 6,7 + 5,8 + 5,1 + 4,6 = 30,1 процента. Если числа, первая цифра которых 5, 6, 7, 8 или 9, умножить на два, произведение всегда будет начинаться с цифры 1, как показано в таблице. Другими словами, 30,1 процента чисел в массиве T начинается с цифры 1, что соответствует закону Бенфорда!

Данная закономерность имеет место и в случае других цифр. Умножение на 2 сначала нарушает, а затем восстанавливает действие закона Бенфорда, но распределение первых цифр при этом сохраняется. Я выбрал умножение на 2, поскольку это самый простой множитель, но с таким же успехом можно было бы взять в качестве множителя 3, или 1,6, или число π, или какое-либо еще — закон Бенфорда действовал бы, так или иначе. Под любое изменение масштаба распределение Бенфорда перенастраивается, как будто это делает рука самого Бога.

В течение нескольких десятилетий после открытия закона Бенфорда он считался не более чем аномалией, трюком из шоу иллюзионистов, нумерологией, но никак не математикой. Однако в 90-х годах ХХ столетия профессор Технологического института штата Джорджия Тед Хилл решил найти теоретическое обоснование распространенности этого закона. Сейчас ученый живет в городе Лос-Осос; это чуть дальше вдоль побережья Тихого океана от того места, где обосновался Даррелл Доррелл. Тед — бывший солдат, высокий, широкоплечий стройный мужчина с бритой головой и седыми усами, сохранивший армейскую выправку. Когда я приехал к нему, он повел меня в небольшой деревянный домик в конце сада, из окон которого открывался вид на океан и два национальных парка. В камине потрескивали дрова. Тед назвал этот домик «математической дачей». Это глобальный центр исследования закона Бенфорда.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное