Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

Если говорить языком математики, частота встречаемости слов в романе «Улисс» приближенно подчиняется следующему закону:

частота × ранг = 26 500

Эту формулу можно привести к такому виду:

В общем виде данное уравнение выглядит так:

Следовательно, частотность употребления того или иного слова обратно пропорциональна его рангу (порядковому номеру) в списке, упорядоченном по убыванию частоты. Другими словами, если ранг слова в n раз больше, то частота его использования в n раз меньше.

Изучив другие тексты, Ципф пришел к выводу, что во всех книгах на всех языках частота встречаемости слов и их порядковый номер в частотном списке находятся в обратной зависимости, но с небольшим уточнением:

Это уравнение известно как закон Ципфа. (Когда два числа записаны в форме xy, мы говорим «x в степени y», и это значит, что число x умножается само на себя y раз. Как мы знаем со школьных лет, 42 = 4 × 4, а 23 = 2 × 2 × 2. Однако число y может быть не только целым числом. Следовательно, 21,5 означает, что число 2 умножается само на себя 1,5 раза, а это равно 2,83. Чем ближе значение числа y к 1, тем ближе xy к числу x.)

Ципф обнаружил, что значение константы a всегда стремится к 1 независимо от того, кто автор книги и каково ее содержание. То есть зависимость между частотой встречаемости слов и их рангом всегда очень близка к обратно пропорциональной зависимости. В случае романа «Улисс» значение a равно 1.

Я считаю закон Ципфа чрезвычайно увлекательным. Он раскрывает заманчиво простую математическую закономерность, определяющую выбор слов. Я решил выяснить, соблюдается ли этот закон в книге, которую вы сейчас читаете. Для подсчета частотности слов я воспользовался компьютерной программой, а не гуммированной бумагой и ножницами. Просматривая частотную таблицу, я увидел, что частота встречаемости слов действительно обратно пропорциональна их порядковому номеру в таблице. Самое распространенное слово, употребляемое мною в книге («the»), встречается в десять раз чаще, чем десятое по частоте слово «was», примерно в сто раз чаще, чем сотое по частоте слово «who», и в тысячу раз чаще, чем тысячное слово «spirals».

Когда я составил на основе данных о частоте и ранге слов график (первый график, представленный ниже), оказалось, что соответствующие точки лежат близко к координатным осям. График, отображающий обратно пропорциональную зависимость, всегда представляет собой L-образную кривую. Сначала кривая резко снижается, а затем быстро выравнивается и переходит в своего рода «длинный хвост». Это говорит о том, что одни слова встречаются в тексте в огромном количестве, а другие почти не используются. (На самом деле во всех текстах, независимо от их объема, около 50 процентов слов употребляются только один раз. В данной книге таких слов 51 процент[43].)

Распределение частотности слов в книге «Алекс в Зазеркалье»

На нижнем графике отображены те же данные, но изменен масштаб. Расстояние от 1 до 10, от 10 до 100 и от 100 до 1000 теперь одинаковое на обеих осях, другими словами, мы имеем двойной логарифмический масштаб. График, напоминающий провисший кабель, как по волшебству превратился в туго натянутую струну. Появился некий математический порядок: точки графика образуют почти идеальную прямую.

Прямая линия на графике, построенном в двойном логарифмическом масштабе, — доказательство того, что эти данные подчиняются закону Ципфа (в Приложении 2 я объясню почему). С математической точки зрения прямая линия более полезна, чем кривая с длинным хвостом, поскольку ее свойства легче анализировать. В частности, у прямой есть постоянный градиент. Мы вернемся к понятию градиента немного позже, а пока вам нужно знать только то, что градиент — это степень наклона: отношение расстояния, покрытого прямой по вертикали, к расстоянию по горизонтали. Если нарисовать линию наилучшего соответствия и определить ее градиент, он и будет представлять собой константу a в уравнении закона Ципфа. Я рассчитал градиент линии на расположенном выше графике. Он чуть больше единицы, а это значит, что по сравнению с Джеймсом Джойсом я чаще использую самые распространенные слова и реже — наименее распространенные.

При более близком рассмотрении не все точки на графике попадают на прямую линию. Некоторые отклоняются от нее, особенно примерно двадцать слов, встречающихся в тексте чаще всего. Однако в большинстве случаев точки находятся очень близко к этой линии. Поразительно то, что порядковый номер подавляющего количества слов в этой книге позволяет достаточно точно определить частоту их использования, и наоборот.

Профессор Ципф обнаружил такую же обратно пропорциональную зависимость еще в одной книге — книге переписи населения США 1940 года. Однако в этот раз он подсчитывал не частотность слов, а численность населения крупных американских городов.

Муниципальный район/Ранг/Население

Нью-Йорк / северо-восток Нью-Джерси/1/12 миллионов

Кливленд/10/1,2 миллиона

Гамильтон/Мидлтаун/100/0,11 миллиона

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное