Читаем Магия чисел полностью

Здесь обратите внимание на то, что первое действие в задаче (600 х 658) является хорошей оценкой ответа. Но наш метод позволяет перейти от оценки к точному ответу.

Обратите также внимание, что во всех примерах сумма чисел, которые мы перемножаем в первом действии, такая же, как и исходные числа. Например, в задаче выше 900 + 829 = 1729, как и 876 + 853 = 1729. Это следует из равенства:

z + [(z + a) + b] = (z + a) + (z + b)

Поэтому, чтобы получить число, которое надо умножить на 900 (оно будет в диапазоне «800 плюс»), нужно всего лишь взглянуть на последние две цифры суммы 76 + 53 = 129, чтобы вышло 829.

В следующем примере сложение 827 + 761 = 1588 подсказывает, что нужно перемножить 800 х 788, а затем из полученного результата вычесть произведение 27 х 39.

Этот метод настолько эффективен, что если задача типа «3 на 3», над которой вы думаете в настоящий момент, состоит из чисел, далеких друг от друга, то иногда можно видоизменить ее путем деления одного и умножения другого числа на одинаковое число (тем самым сблизив сомножители по величине). Например, задачу 672 х 157 можно решить следующим образом.

Когда перемножаемые числа одинаковы, метод совместной близости генерирует такие же вычисления, как и в традиционном методе возведения в квадрат.

Метод сложения

Когда ни один из предыдущих методов не работает, я ищу возможность использовать метод сложения, в особенности если первые две цифры одного из трехзначных чисел просты в разложении. Например, в нижеприведенном примере 64 (первые две цифры числа 641) раскладывается как 8 х 8, поэтому я его решаю следующим образом.

По тому же принципу в примере ниже 42 из числа 427 раскладывается как 6 х 7, поэтому можно использовать метод сложения, представив 427 в виде 420 + 7.

Часто я разбиваю последнюю задачу на сложение на два этапа, как показано ниже.

Поскольку задачи, решаемые методом сложения, требуют определенных усилий, обычно я ищу другой способ, который приведет к простым вычислениям в конце процесса решения.

Например, задачу, показанную выше, можно решить с помощью разложения. Вот какие действия я бы выполнил:

В самых простых задачах, решаемых методом сложения, одно из чисел содержит 0 в середине числа, как показано ниже.

Такие задачи, как правило, самые легкие из тех, которые можно решить аналогичным способом. Поэтому стоит приглядеться к задаче типа «3 на 3», чтобы определить возможность ее преобразования в задачу с нулями. Это окупается.

Например, в задачу 732 х 308 можно преобразовать следующие «безнулевые» примеры.

Мы уже упоминали, что другой способ решения данной задачи сводится к выполнению операций 308 х 366 х 2 и использованию преимущества близости чисел 308 и 366.

Щелкаем еще один «крепкий орешек»:

Метод вычитания

Метод вычитания — это орудие, которое я время от времени применяю, когда одно из трехзначных чисел можно округлить до простого трехзначного числа с нулем на конце, как в следующем примере:

Подобным образом решаем такую задачу:

Метод «когда все остальное не работает»

Когда все остальное не срабатывает, я применяю один очень надежный метод. При его использовании задача на умножение типа «3 на 3» разбивается на 3 части: задача типа «3 на 1», типа «2 на 1» и типа «2 на 2». По мере решения этих задач их ответы суммируются. Такие задачи всегда сложные, особенно если нельзя видеть исходные числа. Во время выступлений с задачами на умножение типа «3 на 3» и «5 на 5» у меня всегда под рукой записанные условия, но все расчеты я произвожу в уме.

Вот пример:

На практике вычисления выполняются так, как показано ниже. Иногда я использую фонетический код для хранения в памяти тысяч (здесь 447 = our rug) и сотен (здесь 1) — на пальцах.

Решим еще один пример, но на этот раз я разобью на части первое число. (Обычно я так поступаю с бóльшим из чисел, так решить задачу на сложение становится легче.)

Эти задачи встроены в примеры «5 на 5», которые находятся в следующем разделе.

УМНОЖЕНИЕ «5 НА 5»

Самая большая задача, которую мы попытаемся решить в уме, состоит из двух пятизначных чисел. Для выполнения умножения типа «5 на 5» вам необходимо в совершенстве овладеть навыком решения задач типа «2 на 2», «2 на 3» и «3 на 3» (а также уметь применять фонетический код). Решение задачи «5 на 5» — это просто вопрос сведения воедино всех типов задач, освоенных вами ранее. Как и при возведении в квадрат пятизначных чисел, вы будете использовать распределительный закон для разделения чисел на составные части. Например:

Основываясь на этом разделении, данную задачу можно разложить на четыре более простые задачи на умножение в стиле «крест-накрест», что я покажу ниже, как задачу типа «2 на 2», две задачи типа «3 на 2» и одну типа «3 на 3».

Далее суммируются решения всех этих задач. Вот как это выглядит:

Как и при возведении пятизначных чисел в квадрат, я начинаю с середины, берясь за задачу «3 на 2» (как самую трудную):

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное