Читаем Приглашение в теорию чисел полностью

Если сравнение (8.4.1) выполняется для некоторого числа а, взаимно простого с числом N, то число N может как быть простым, так и не быть им. При этом случаи, когда сравнение выполняется для составного числа N, являются исключительными, поэтому при выполнении сравнения мы можем быть почти уверены в том, что число N — просто. Однако для многих целей хотелось бы знать наверняка, является ли данное число простым. Это удается сделать с помощью усовершенствованного метода, основанного на следующем замечании: N является простым числом в том случае, если сравнение (8.4.1) выполняется для степени N — 1, но не выполняется ни для какой степени, являющейся делителем числа N — 1.

Имеется другой подход, эффективный для не слишком больших чисел N. Возьмем а = 2. Американские математики Пуль и Лемер нашли с помощью ЭВМ все значения чисел N ≤ 100 000, исключительные в том смысле, что выполняется сравнение

2N-1 ≡ 1 (mod N), (8.4.3)

но число N является составным. Такие числа N иногда называют псевдопростыми. Для каждого из этих чисел N были указаны также наибольшие простые множители.

С помощью таблиц Пуля и Лемера можно определить простоту любого числа N ^ 100 000 000. Сначала проверяется выполнимость сравнения (8.4.3). Если это сравнение не выполняется, то число N — составное. Если же это сравнение выполняется и число N есть в таблицах, то оно также составное, и мы можем прочесть в таблицах его простой множитель. И наконец, если сравнение (8.4.3) выполняется и числа N нет в таблицах, то оно простое.

Наименьшим составным числом, удовлетворяющим сравнению (8.4.3), является

N = 341 = 11 • 31.

В пределах 1000 существуют еще два таких числа,

а именно:

N = 561= 3 • 11 • 17,

N = 645 = 3 • 5 • 43.

Число 561 является замечательным, так как соответствующее сравнение (8.4.1) выполняется для каждого целого числа а, взаимно простого с числом N. Мы называем такие особые числа числами, имеющими свойство Ферма. По таким числам в последнее время было проведено огромное количество исследований.

<p>РЕШЕНИЯ ИЗБРАННЫХ ЗАДАЧ</p>

Система задач 1.3.

Ответы для обеих задач можно найти в табл. 3 на стр. 61.

Система задач 1.4.

1. Предположим, что верно соотношение

Tn-1 = 1/2 (n-1) n.

Можно проверить его для n= 2, 3, 4. Из рис. 4 видно, что Тn получается из Tn-1 прибавлением числа n, поэтому

Тn = Тn-1n = 1/2 n (n + 1).

2. Из рис. 5 видно, что для того, чтобы получить Рn, нужно прибавить к Рn-1 число

1 +3 (n — 1) = Зn — 2.

Если мы уже знаем, что

Pn-1 = 1/2 (3 (n — 1)2 — (n — 1))

(это справедливо для п = 2, 3, 4, в соответствии с последовательностью (1.4.3)), то отсюда следует, что

Рn = Pn-1 + 3n — 2 = 1/2 (Зn2n).

3. Мы можем получить nk-угольное число из (n — 1) — го, прибавив к нему

(k — 2) (n — 1) + 1

и выводя формулу таким же способом, как и в задаче 2. Задачи 2 и 3 могут быть решены иначе: делением точек на треугольники, как указано на рис. 5, и использованием формулы для Тn. Проведите это доказательство во всех деталях.

Система задач 1.5.

1. Например, квадрат

16  3  2 13

 9  6  7 12

 5 10 11  8

 4 15 14  1

полученный перестановкой второй и третьей строк квадрата Дюрера, также является магическим. Менее тривиальным является квадрат

16  4  1 13

 9  5  8 12

 6 10 11  7

 3 15 14  2

2. Так как числа в квадрате 4 × 4 не превышают 16, возможны лишь два года, 1515 и 1516. Первый, очевидно, исключается, во втором случае построить квадрат оказывается невозможным.

Система задач 2.1.

2. 1979.

3. Числа от 114 до 126 все составные.

Система задач 2.3.

1. n = 3, 5, 15, 17,51,85

2. Имеем

360°/51 = 6 360°/17 — 360°/3.

3. Количество различных произведений чисел Ферма (от одного до пяти чисел в одном произведении) равно

5 + 10 + 10 + 5 + 1 = 31.

Таково количество чисел, для которых могут быть построены многоугольники. Наибольшим значением является

n = 3 • 5 • 17 • 257 • 65537 = 4 294 967 295.

Система задач 2.4.

1. В каждой из первых десяти сотен имеется соответственно 24, 20, 16, 16, 17, 14, 16, 14, 15, 14 простых чисел.

2. Существует 11 таких простых чисел.

Система задач 3.1.

1. 120 = 23 • 3 • 5; 365 = 5 • 73; 1970 = 2 • 5 • 197.

3. 360 = 2 • 2 • 90 = 2 • 6 • 30 = 2 • 10 • 18 = 6 • 6 • 10.

Система задач 3.2.

1. Простое число имеет два делителя; рα — степень простого числа, имеет а + 1 делитель.

2. τ(60) = 12, τ(366) = 8, τ(1970) = 8.

3. Наибольшим количеством делителей у числа, не превосходящего 100, является 12. Такое количество делителей имеют числа 72, 84, 90, 96.

Система задач 3 3.

1. 24; 48; 60; 10080.

2. 192; 180; 45360.

3. 24 и 36.

4. Пусть число делителей равно rs, где r и s — простые числа. Тогда

nprs-1 или n = pr-1 qs-1,

Перейти на страницу:

Все книги серии Библиотечка Квант

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное