Читаем Приглашение в теорию чисел полностью

где р и q — простые числа.

Система задач 3.4.

1. 8 128 и 33550 336.

Система задач 4.1.

1. а) D(360, 1970) = 10; б) D(30, 365) = 5.

2. Предположим, что √2 — рациональное число, т. е. √2 = a/b. Можем считать, что все сокращения произведены и числа а и b не имеют общих множителей. Возводя в квадрат это соотношение, получаем 2b2 = a.

По теореме о единственности разложения число а делится на 2, следовательно, а2 делится на 4. И вновь по теореме о единственности разложения, примененней к числу b2, получаем, что b делится на 2, что противоречит предположению о том, что числа а и b не имеют общих множителей. Полученное противоречие показывает, что √2 — число иррациональное.

Система задач 4.2.

1. Нечетные числа.

2. Если простое число р является делителем чисел n и n + 1, то оно будет делителем числа (n + 1) — n = 1.

3. Никакие из них не являются взаимно простыми.

4. Да.

Система задач 4.3.

2. D(220, 284) = 4, D(1184, 1210)=2, D(2620, 2924)= 4, D(5020, 5564) = 4.

3. Чтобы определить наибольшую степень числа 10, на которую делится число n = 12•3… n, мы должны сначала найти наибольшую степень числа 5, на которую оно делится. Каждое пятое число 5, 10, 15, 20, 25, 30 делится на 5, всего таких чисел, не превосходящих числа n, [n/5]. Однако некоторые из них делятся на вторую степень числа 5, а именно, 25, 50, 75, 100…; таких чисел существует [n/25]. Некоторые из них делятся на третью степень числа 5, т. е. на 125: 125, 250, 375; их существует [n/53] и т. д. Это показывает, что выражение для точной степени числа 5, делящей число n! таково:

[n/5] + [n/52] + [n/53] +…     (*)

В этой сумме достаточно выписать лишь те члены, в которых у выражения в квадратных скобках числитель не меньше знаменателя.

Точно такие же рассуждения можно провести для нахождения соответствующей степени любого другого простого числа р. В частности, когда р = 2, получается выражение

[n/2] + [n/22] + [n/23] +…

Ясно, что это выражение не меньше, чем выражение (*), т. е. в числе n! каждому множителю 5 можно подобрать множитель 2. Таким образом, выражение (*) также дает и величину степени числа 10, делящей n! которая равна числу нулей, стоящих в конечной части записи числа.

Примеры. n = 10, [10/5] = 2, [10/52] = 0, поэтому 10! оканчивается двумя нулями;

n = 31, [31/5] = 6, [31/52] = 1, [31/53] = 0, поэтому 31! оканчивается 7 нулями.

Система задач 4.4.

1. К(360, 1970) = 70 920, К(30, 365) = 2190.

2. К(220, 284)= 15620, K(1184, 1210) = 716 320, К(2620, 2924) =1 915 220, К(5020, 5564) = 6 982 820.

Система задач 5.2.

1. m = 8, n = 1: (16, 63, 65), n = 3: (24, 55, 73), n = 5: (80, 39, 89), n = 7: (112, 15, 113),

m = 9, n = 2: (36, 77, 85), n = 4: (64, 65, 97), n = 8: (144, 17, 145),

m =10, n = 1: (20, 99, 101), n = 3: (60, 91, 109), n = 7: (140, 51, 149), n = 9: (180, 19, 181).

2. Нет. Если

2mn = 2m1n1, m2n2 = m12n12, m2 + n2 = m12 + n12,

то отсюда следовало бы, что

m2 = m12, n2 = n12 или mm1, n = n1.

3. Если число с является величиной гипотенузы пифагорова треугольника, то произведение , где k — любое целое число, обладает теми же свойствами. Таким образом, достаточно рассмотреть лишь значения с ≤ 100, которые не имеют делителей и могут быть величиной гипотенузы. Соответствующие

[…]

Система задач 8.2.

2. Для с = 19 последние два члена в формуле (8.2.2) можно заменить числом 1, поскольку тогда [1/4 c] — 2c ≡ 1 (mod 7).

Система задач 8.3.

1. 1:2:3:4:5:6:7:8

   7:6:5:8:3:2:1:4

   8:7:6:5:4:3:2:1

   2:1:7:6:8:4:3:5

   3:8:1:7:6:5:4:2

   4:3:2:1:7:8:5:6

   5:4:8:2:1:7:8:3

   6:5:4:3:2:1:8:7

2. Когда r = 2, исключительный случай попадает на х = 1, следовательно, 1 играет с 8, а 8 играет с 1.

Для других значений х = 2, 3…, 7

y ≡ 2 — х ≡ 9 — х (mod 7),

т. е. соответственно у = 7, 6…, 2.

3. Команда N — 1 играет с

yr — (N — 1) ≡ r (mod (N — 1))

в r-м туре. Команда N — 1 может быть исключительной командой, если

2(N— 1) ≡ (mod (N— 1)),

следовательно, r = N — 1 и тогда команда N — 1 играет с командой N.

4. Условие (8.3.2) симметрично относительно х и уr, когда х — обычная команда. Если х удовлетворяет условию (8.3.3), то эта команда играет с командой N и, по определению, команда N играет с командой х.

<p>ЗАКЛЮЧЕНИЕ</p>

Таково наше приглашение в теорию чисел. Если она заинтересовала вас и вы хотите познакомиться с ней поближе, то для этого следует прочесть какой-нибудь систематический курс теории чисел, например,

И. М. Виноградов. Основы теории чисел. — М: Наука, 1972.

Существует также ряд популярных книг, освещающих отдельные вопросы теории чисел. Из них мы рекомендуем вам следующие:

Н. Н. Воробьев. Признаки делимости. — М: Наука, 1980.

Л. А. Калужнин. Основная теорема арифметики. — М.: Наука, 1969.

В. Серпинский. О решении уравнений в целых числах. — М.: Физматгиз. 1963.

В. Серпинский. Что мы знаем и чего не знаем о простых числах. — М. — Л.: Физматгиз, 1961.

Перейти на страницу:

Все книги серии Библиотечка Квант

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное