Трилон Б со многими катионами металлов образует прочные, растворимые в воде внутрикомплексные соединения (хелаты). При образовании хелата катионы металла замещают два атома водорода в карбоксильных группах трилона Б и образуют координационные связи с участием атомов азота аминогрупп.
При рН = 7-11 анион этого индикатора (HInd2-) имеет синюю окраску. С катионами металлов (Са2+, Mg2+, Zn2+ и др.) в слабощелочном растворе в присутствии аммиачного буфера (рН = 8-10) он образует комплексные соединения винно-красного цвета по схеме:
При титровании исследуемого раствора трилоном Б:
Константы нестойкости комплексов равны соответственно:
4.4. Жесткость воды. Определение жесткости воды
Са(HCO3)2 = CaCO3V + CO2^ + H2O
Mg(HCO3)2 = MgCO3V + CO2^ + H2O
2Mg(HCO3)2 = (MgOH)2CO3V + 3CO2^ + H2O
Сумма величин временной и постоянной жесткости составляет общую жесткость воды:
Жобщ. = Жвр. + Жпост.
Существуют различные способы определения жесткости воды: определение временной жесткости с помощью метода нейтрализации; комплексонометрический метод определения общей жесткости.
Гидрокарбонатная жесткость воды определяется титрованием воды раствором соляной кислоты в присутствии метилового оранжевого, так как рН в точке эквивалентности находится в области перехода окраски этого индикатора.
Са(HCO3)2 + 2HCl -> CaCl2 + 2Н2CO3
Mg(HCO3)2 + 2HCl -> MgCl2 + 2H2CO3
До начала титрования рН раствора гидрокарбонатов кальция и магния больше 7 за счет гидролиза солей с участием аниона слабой кислоты. В точке эквивалентности раствор имеет слабокислую реакцию, обусловленную диссоциацией слабой угольной кислоты:
Н2CO3 -> HCO3 + Н+
Жвр (Н2O) =
Общая жесткость воды (общее содержание ионов кальция и магния) определяется с использованием метода комплексонометрии.
Жпост (Н2O) =
4.5. Методы редоксиметрии
Методы редоксиметрии, в зависимости от используемых титрантов, подразделяются на:
1)
2)
При вычисления молярных масс эквивалентов окислителей и восстановителей исходят из числа электронов, которые присоединяет или отдает в данной реакции молекула вещества. Для нахождения молярной массы эквивалента окислителя (восстановителя) нужно его молярную массу разделить на число принятых (отданных) электронов в данной полуреакции.
Например, в реакции окисления сульфата железа(II) перманганатом калия в кислой среде:
2KMnO4 + 10FeSO4 + 8H2SO4 = 2MnSO4 + 5Fe2(SO4)3 + K2SO4 + 8H2O
1 | MnO4 + 8Н+ + 5e -> Mn2+ + 4H2O
5 | Fe2+ – e -> Fe3+
ион MnO4 как окислитель принимает пять электронов, а ион Fe2+ как восстановитель отдает один электрон. Поэтому для расчета молярных масс эквивалентов окислителя и восстановителя их молярные массы следует разделить на пять и на один соответственно.
M3(Fe2+) = M(Fe2+) = 55,85 г/моль.
В реакции окисления сульфита натрия перманганатом калия в нейтральной среде:
2KMnO4 + 3Na2SO3 + Н2O -> 2MnO2 + 3Na2SO4 + 2KOH
2 | MnO4 + 2Н2O + Зe -> MnO2 + 4OH
3 | SO32- + 2OH + 2e -> SO42- + Н2O
ион MnO4 принимает только три электрона, а ион восстановителя SO32- отдает два электрона, следовательно:
Молярные массы эквивалентов окислителей и восстановителей зависят от условий проведения реакций и определяются, исходя из соответствующих полуреакций.
4.6. Фотоколориметрия
Фотоколориметрия – оптический метод анализа, который рассматривает взаимодействие вещества с электромагнитным излучением в видимой области: длина волны