в неравновесном процессе
в равновесном процессе
S – энтропия, Дж/град,
– приведенная теплота.
Статистическая интерпретация энтропииКаждому состоянию системы приписывается термодинамическая вероятность (определяемая как число микросостояний, составляющих данное макросостояние системы), тем большая, чем более неупорядоченным или неопределенным является это состояние. Энтропия – функция состояния, описывающая степень неупорядоченности системы.
S = klnW – формула Больцмана.
Система стремится самопроизвольно перейти в состояние с максимальной термодинамической вероятностью.
Расчет абсолютной энтропииИзменение энтропии в ходе химического процесса определяется только видом и состоянием исходных веществ и продуктов реакции и не зависит от пути реакции:
S = (iSi)прод – (iSi)исхВеличины абсолютной энтропии в стандартных условиях приведены в справочной литературе.
1.4. Термодинамические потенциалы
Потенциал – величина, убыль которой определяет производимую системой работу.
Самопроизвольно могут протекать только те процессы, которые приводят к понижению свободной энергии системы; система приходит в состояние равновесия, когда свободная энергия достигает минимального значения.
F = U – TS – свободная энергия Гельмгольца – изохорно-изотермический потенциал (Дж) – определяет направление и предел самопроизвольного протекания процесса в закрытой системе, находящейся в изохорно-изотермических условиях.
dF = dU – TdS или F = U – TSG = H – TS = U + pV – TS – свободная энергия Гиббса – изобарно-изотермический потенциал (Дж) – определяет направление и предел самопроизвольного протекания процесса в закрытой системе, находящейся в изобарно-изотермических условиях.
dG = dH – TdS или G = Н – TSG = (iGi)прод – (iGi)исхG0 = (iGобр0)прод – (iGобр0)исхУсловия самопроизвольного протекания процессов в закрытых системахИзобарно-изотермические (Р = const, Т = const):
G 0, dG 0Изохорно-изотермические (V = const, Т = const):
F 0, dF 0Термодинамическим равновесием называется такое термодинамическое состояние системы с минимальной свободной энергией, которое при постоянстве внешних условий не изменяется во времени, причем эта неизменяемость не обусловлена каким-либо внешним процессом.
Условия термодинамического равновесия в закрытой системеИзобарно-изотермические (Р = const, Т = const):
G = 0, dG = 0, d 2G 0Изохорно-изотермические (V = const, Т = const):
F = 0, dF = 0, d 2F 0Уравнения изотермы химической реакции:Для реакции v1A1 + v2A2
+ … = v'1B1 + v'2B2 + …
Здесь Ci,pi – концентрации, давления реагирующих веществ в любой момент времени, отличный от состояния равновесия.
Влияние внешних условий на химическое равновесиеПринцип смещения равновесия Ле Шателье-Брауна
Если на систему, находящуюся в состоянии истинного равновесия, оказывается внешнее воздействие, то в системе возникает самопроизвольный процесс, компенсирующий данное воздействие.
Влияние температуры на положение равновесияЭкзотермические реакции: Н° 0 (U° 0). Повышение температуры уменьшает величину константы равновесия, т. е. смещает равновесие влево.
Эндотермические реакции: Н° 0 (U° 0). Повышение температуры увеличивает величину константы равновесия (смещает равновесие вправо).
2. Фазовые равновесия
Компонент – химически однородная составная часть системы, которая может быть выделена из системы и существовать вне ее. Число независимых компонентов системы равно числу компонентов минус число возможных химических реакций между ними.
Число степеней свободы – число параметров состояния системы, которые могут быть одновременно произвольно изменены в некоторых пределах без изменения числа и природы фаз в системе.
Правило фаз Дж. Гиббса:
Число степеней свободы равновесной термодинамической системы С равно числу независимых компонентов системы К минус число фаз Ф плюс число внешних факторов, влияющих на равновесие: С = К – Ф + n.